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Preface

Three Institutes of the CoreGRID Network of Excellence organized a com-
mon workshop to present and discuss the latest results on Grid and P2P Tech-
nologies achieved by the Institute partners as well as the latest developments
by researchers outside the CoreGRID community. The three institutes involved
are:

The Institute on Programming Model,

The Institute on Architectural Issues: Scalability, Dependability, Adapt-

ability, and

The Institute on Grid Systems, Tools, and Environments.

The aforementioned institutes have a history in organizing joint events – the
most recent one being the workshop in Krakow, Poland in June 2006.

The 2007 joint workshop took place at the premises of the Institute of
Computer Science, Foundation for Research and Technology-Hellas (FORTH-
ICS), Heraklion-Crete, Greece on June 12-13, 2007. The event was organized
in two plenary sessions hosting a presentation from the CoreGRID scientific
coordinator and three invited speakers, followed by 12 technical sessions hosting
the accepted contributions. A total of 42 papers were accepted for presentation
among those submitted to the workshop.

The workshop invited speakers presented some of the latest developments
in Grid Technology, Semantic Grid, and P2P technology respectively. Their
talks focused on ongoing work including some open problems and stimulated
interesting discussion among the participants.

The invited speakers and their respective talk titles were the following:

Dennis Gannon, Indiana University, “Programming Gateways to the

Teragrid”

David De Roure, University of Southampton, “Re- evaluating the Grid”

Ann Chervenak, University of Southern California “Peer-to-peer

Approaches to Grid Resource Discovery”.



x MAKING GRIDS WORK

All the contributions presented to the workshop have been included in a
CoreGRID technical report – TR-00801. The papers presented at the workshop
have been submitted to a further formal refereeing process. This volume hosts
the selected contributions resulting from this review process.

We wish to thank our hosts from FORTH-ICS for their kind hospitality,
the local organization team for providing such superb support, the CoreGRID
administrative structure for allowing us to organize the workshop and, in partic-
ular, to support the invited speakers, and the entire CoreGRID community for
submitting such a large number of interesting and high quality papers and for
their enthusiastic participation in the workshop.

Our thanks also go to the European Commission for sponsoring this volume
of selected articles from the workshop via the CoreGRID NoE project, grant
number 004265.

Marco Danelutto, Paraskevi Fragopoulou, Vladimir Getov

1Available at http://www.coregrid.net/mambo/content/view/152/292/
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Abstract We present behavioural skeletons for the CoreGRID Component Model, which
are an abstraction aimed at simplifying the development of GCM-based self-
management applications. Behavioural skeletons abstract component self-man-
agent in component-based design as design patterns abstract class design in
classic OO development. As here we just wish to introduce the behavioural
skeleton framework, emphasis is placed on general skeleton structure rather than
on their autonomic management policies.

Keywords: components, code adaptivity, autonomic computing, skeletons

∗This research is carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265) and the FP6 GridCOMP project partially founded by the European
Commission (Contract FP6-034442).
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1. Introduction and Related Work

While developing grid applications neither the target platforms nor their
status are fixed, statically or dynamically [12]. This makes application adap-
tivity an essential feature in order to achieve high performance and to exploit
efficiently the available resources [1].

In recent years, several research initiatives exploiting component technology
[9] have investigated the possibilities related to component adaptation, i.e. the
process of changing the component for use in different contexts. This process
can be conceived as either a static or dynamic process.

The basic use of static adaptation covers straightforward but popular method-
ologies such as copy-paste and OO inheritance. A more advanced usage covers
the case in which adaptation happens at run-time. These systems enable dy-
namically defined adaptation by allowing adaptations, in the form of code,
scripts or rules, to be added, removed or modified at run-time [7]. Among
them it is worth distinguishing the systems where all possible adaptation cases
have been specified at compile time, but the conditions determining the actual
adaptation at any point in time can be dynamically changed [4]. Dynamically
adaptable systems rely on a clear separation of concerns between adaptation
and application logic. This approach has recently gained increased impetus in
the grid community, especially via its formalisation in terms of the Autonomic

Computing (AC) paradigm [15, 5, 3]. The AC term is emblematic of a vast
hierarchy of self-governing systems, many of which consist of many interacting,
self-governing components that in turn comprise a number of interacting, self-
governing components at the next level down [13]. An autonomic component
will typically consist of one or more managed components coupled with a single
autonomic manager that controls them. To pursue its goal the manager may
trigger an adaptation of the managed components to react to a run-time change
of application QoS requirements or to the platform status.

In this regard, an assembly of self-managed components implements, via
their managers, a distributed algorithm that manages the entire application.
Several existing programming frameworks aim to ease this task by providing
a set of mechanisms to dynamically install reactive rules within autonomic
managers. These rules are typically specified as a collection of when-event-if-

cond-then-act clauses, where event is raised by the monitoring of internal
or external component activity (e.g. the component server interface received
a request, and the platform running a component exceeded a threshold load,
respectively); cond is an expression over internal component attributes (e.g.
component life-cycle status); act represents an adaptation action (e.g. create,
destroy a component, wire, unwire components, notify events to another compo-
nent’s manager). Several programming frameworks implement variants of this
general idea, including ASSIST [20, 1], AutoMate [17], SAFRAN [10], and
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finally the forthcoming CoreGRID Grid Component Model (GCM) [9]. The
latter two are derived from a common ancestor, i.e. the Fractal hierarchical com-
ponent model [16]. All the named frameworks, except SAFRAN, are targeted
to distributed applications on grids.

Though such programming frameworks considerably ease the development
of an autonomic application for the grid (to various degrees), they rely fully on
the application programmer’s expertise for the set-up of the management code,
which can be quite difficult to write since it may involve the management of
black-box components, and, notably, is tailored for the particular component or
assembly of them. As a result, the introduction of dynamic adaptivity and self-
management might enable the management of grid dynamism and uncertainty
aspects but, at the same time, decreases the component reuse potential since it
further specialises components with application specific management code.

In this work, we propose behavioural skeletons as a novel way to describe
autonomic components in the GCM framework. Behavioural skeletons aim to
describe recurring patterns of component assemblies that can be (either statically
or dynamically) equipped with correct and effective management strategies with
respect to a given management goal. Behavioural skeletons help the application
designer to 1) design component assemblies that can be effectively reused,
and 2) cope with management complexity by providing a component with an
explicit context with respect to top-down design (i.e. component nesting).

2. Grid Component Model

GCM is a hierarchical component model explicitly designed to support
component-based autonomic applications in grid contexts. GCM allows compo-
nent interactions to take place with several distinct mechanisms. In addition to
classical “RPC-like” use/provide ports (or client/server interfaces), GCM allows
data, stream and event ports to be used in component interaction. Furthermore,
collective interaction patterns (communication mechanisms) are also supported.
The full specification of GCM can be found in [9].

GCM is therefore assumed to provide several levels of autonomic managers
in components, that take care of the non-functional features of the component
programs. GCM components thus have two kinds of interfaces: functional
and non-functional ones. The functional interfaces host all those ports con-
cerned with implementation of the functional features of the component. The
non-functional interfaces host all those ports needed to support the component
management activity in the implementation of the non-functional features, i.e.
all those features contributing to the efficiency of the component in obtaining
the expected (functional) results but not directly involved in result computa-
tion. Each GCM component therefore contains an Autonomic Manager (AM),
interacting with other managers in other components via the component non-
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functional interfaces. The AM implements the autonomic cycle via a simple
program based on the reactive rules described above. In this, the AM leverages
on component controllers for the event monitoring and the execution of reconfig-
uration actions. In GCM, the latter controller is called the Autonomic Behaviour

Controller (ABC). This controller exposes server-only non-functional inter-
faces, which can be accessed either from the AM or an external component
that logically surrogates the AM strategy. We call passive a GCM component
exhibiting just the ABC, whereas we call active a GCM component exhibiting
both the ABC and the AM.

3. Describing Adaptive Applications

The architecture of a component-based application is usually described
via an ADL (Architecture Description Language) text, which enumerates the
components and describes their relationships via the used-by relationship. In a
hierarchical component model, such as the GCM, the ADL describes also the
implemented-by relationship, which represents the component nesting.

Typically, the ADL supplies a static vision of an application, which is not
fully satisfactory for an application exhibiting autonomic behaviour since it
may autonomously change behaviour during its execution1. Such change may
be of several types:

Component lifecycle. Components can be started or stopped.

Component relationships. The used-by and/or implemented-by relation-
ships among components are changed. This may involve component
creation/destruction, and component wiring alteration.

Component attributes. A refinement of the behaviour of some compo-
nents (which does not involve structural changes) is required, usually
over a pre-determined parametric functionality.

In the most general case, an autonomic application may evolve along adaptation
steps that involve one or more changes belonging to these three classes. In this
regard, the ADL just represents a snapshot of the launch time configuration.

The evolution of a component is driven by its AM, which may request
management action with the AM at the next level up in order to deal with
management issues it cannot solve locally. Overall, it is a part of a distributed
system that cooperatively manages the entire application.

In the general case, the management code executing in the AM of a com-
ponent depends both on the component’s functional behaviour and the goal of

1However, note that with GCM the ADL provides a hook to accommodate a behavioural specification.
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the management. The AM should also be able to cooperate with other AMs,
which are unknown at design time due to the nature of component-based design.
Currently, programming frameworks supporting the AC paradigm (such as the
ones mentioned in Sec. 1) just provide mechanisms to implement management
code. This approach has several disadvantages, especially when applied to a
hierarchical component model:

The management code is difficult to develop and to test since the context
in which it should work may be unknown.

The management code is tailored to the particular instance of the man-
agement elements (inner components), further restricting the component
possible reusability.

For this reason, we believe that the “ad-hoc” approach to management code is
unfit to be a cornerstone of the GCM component model.

4. Behavioural Skeletons

Behavioural skeletons aim to abstract parametric paradigms of GCM com-
ponent assembly, each of them specialised to solve one or more management
goals belonging to the classical AC classes, i.e. configuration, optimisation,
healing and protection.

Behavioural skeletons represent a specialisation of the algorithmic skeleton
concept for component management [5]. Algorithmic skeletons have been
traditionally used as a vehicle to provide efficient implementation templates of
parallel paradigms. Behavioural skeletons, as algorithmic skeletons, represent
patterns of parallel computations (which are expressed in GCM as graphs of
components), but in addition they exploit the inherent skeleton semantics to
design sound self-management schemes of parallel components.

Due to the hierarchical nature of GCM, behavioural skeletons can be iden-
tified with a composite component with no loss of generality (identifying
skeletons as particular higher-order components [11]). Since component compo-
sition is defined independently from behavioural skeletons, they do not represent
the exclusive means of expressing applications, but can be freely mixed with
non-skeletal components. In this setting, a behavioural skeleton is a composite
component that

exposes a description of its functional behaviour;

establishes a parametric orchestration schema of inner components;

may carry constraints that inner components are required to comply with;

may carry a number of pre-defined plans aimed at coping with a given
self-management goal.
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Behavioural skeleton usage helps designers in two main ways: the application
designer benefits from a library of skeletons, each of them carrying several pre-
defined, efficient self-management strategies; and, the component/application
designer is provided with a framework that helps the design of new skeletons
and their implementations.

The former task is achieved because (1) skeletons exhibit an explicit higher-
order functional semantics, which delimits the skeleton usage and definition
domain; and (2) skeletons describe parametric interaction patterns and can be
designed in such a way that parameters affect non-functional behaviour but are
invariant for functional behaviour.

5. A Basic Set of Behavioural Skeletons

Here we present a basic set of behavioural skeletons for the sake of exem-
plification. Despite their simplicity, they cover a significant set of parallel
computations in common usage.

One class of behavioural skeletons springs from the idea of functional repli-

cation. Let us assume the skeletons in this class have two functional interfaces:
a one-to-many stream server S, and a many-to-one client stream interface C
(see Fig. 1). The skeleton accepts requests on the server interface; and dis-
patches them to a number of instances of an inner component W, which may
propagate results outside the skeleton via C interface. Assume that replicas of
W can safely lose their internal state between different calls. For example, the
component has just a transient internal state and/or stores persistent data via an
external data-base component.

Farm. A stream of tasks is absorbed by a unicast S, each task is computed
by one instance of W and sent to C, which collect tasks from-any. This skeleton
can be equipped with a self-optimising policy because the number of Ws can
be dynamically changed in a sound way since they are stateless. The typical
QoS goal is to keep a given limit (possibly dynamically changing) of served
requests in a given time frame. The AM just checks the average time tasks need
to traverse the skeleton, and eventually reacts by creating/destroying instances
of Ws, and wiring/unwiring them to/from the interfaces.

Data-Parallel. A stream of tasks is absorbed by a scatter S; each task is split
in (possibly overlapping) partitions, which are distributed to replicas of W to be
computed. Results are gathered and assembled by G in a single item. As in the
previous case, the number of Ws can be dynamically changed (between different
requests) in a sound way since they are stateless. As in the previous case, the
skeleton can be equipped with a self-configuration goal, i.e. resource balancing
and tuning (e.g. disk space, load, memory usage), that can be achieved by
changing the partition-worker mapping in S (and C, accordingly).
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Active-Replication. A stream of tasks is absorbed by a broadcast S, which
sends identical copies to the Ws. Results are sent to G, which reduces them.
This paradigm can be equipped with a self-healing policy because it can deal
with Ws that do not answer, produce an approximate or wrong answer by means
of a result reduction function (e.g. by means of averaging or voting on results).

The presented behavioural skeletons can be easily adapted to the case that S
is a RPC interface. In this case, the C interface can be either a RPC interface or
missing. Also, the functional replication idea can be extended to the stateful case
by requiring the inner component Ws to expose suitable methods to serialise,
read and write the internal state. A suitable manipulation of the serialised state
enables the reconfiguration of workers (also in the data-parallel scenario [1]).

In order to achieve self-healing goals some additional requirements on the
GCM implementation level should be enforced. They are related to the imple-
mentation of GCM mechanisms, such as component membranes and their parts
(e.g. interfaces) and messaging system. At the current level of interest, they are
primitive mechanisms, in which correctness and robustness should be enforced
ex-ante, at least to achieve some of the described management policies.

The process of identification of other skeletons may benefit from the work
done within the software engineering community, which identified some com-
mon adaptation paradigms, such as proxies [18], which may be interposed
between interacting components to change their interaction relationships; and
dynamic wrappers [19]. Both of these can be used for self-protection purposes.
For example, a pair of encrypting proxies can be used to secure a communica-
tion between components. Wrapping can be used to hide one or more interfaces
when a component is deployed into an untrusted platform.

5.1 GCM implementation of Behavioural Skeletons

In terms of the GCM specification [9], a behavioural skeleton is a particu-
lar composite component exhibiting an autonomic conformance level strictly
greater than one, i.e. a component with passive or active autonomic control.
The component exposes pre-defined functional and non-functional client and
server interfaces according to the skeleton type; functional interfaces are usually
collective and configurable. Since skeletons are fully-fledged GCM compo-
nents, they can be wired and nested via standard GCM mechanisms. From
the implementation viewpoint, a behavioural skeleton is a partially defined
composite component, i.e. a component with placeholders, which may be used
to instantiate the skeleton. As sketched in Fig. 1, there are three classes of
placeholders:

1 The functional interfaces S and C that are GCM membrane controllers.
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Figure 1. GCM implementation of functional replication. ABC = Autonomic Behaviour
Controller, AM = Autonomic Manager, W = Worker component, S = Server interface (one-
to-many communication e.g. broadcast, data-parallel scatter, unicast), C = Client interface
(many-to-one communication e.g. from-any, data-parallel gather, reduce, select).

2 The AM that is a particular inner component. It includes the management
plan, its goal, and exported non-functional interfaces.

3 Inner component W, implementing the functional behaviour.

The orchestration of the inner components is implicitly defined by the skeleton
type. In order to instantiate the skeleton, placeholders should be filled with
suitable entities. Observe that only entities in the former two classes are skeleton
specific.

In addition to a standard composite component, a behavioural skeleton is
further characterised by a formal (or semi-formal) description of the component
behaviour. This description can be attached to the ADL component definition
via the standard GCM ADL hook. In this work we propose a description based
on the Orc language, which appears suitable for specification of orchestration
in distributed systems [2].

6. Specifying Skeleton Behaviour

Autonomic management requires that, during execution of a system, com-
ponents of the system are replaced by other components, typically having the
same functional behaviour but exhibiting different non-functional characteris-
tics. The application programmer must be confident about the behaviour of the
replacements with respect to the original. The behavioural skeleton approach
proposed supports these requirements in two key ways:

1 The use of skeletons with its inherent parametrisation permits relatively
easy parameter-driven variation of non-functional behaviour while main-
taining functional equivalence.
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2 The use of Orc to describe component behaviour gives the developer a
firm basis on which to compare the properties of alternative realisations
in the context of autonomic replacement.

In the following we present an Orc specification of the functional replication
example depicted in Fig. 1 followed by several alternative formulations of the
client and server interface behaviours. First, a brief overview of the Orc lan-
guage is presented. A formal description of management plans is not presented
here. The skeleton designer can use the description to prove rigorously (manu-
ally, at present) that a given management strategy will have predictable or no
impact on functional behaviour. The quantitative description of QoS values of
a component with respect to a goal, the automatic validation of management
plans w.r.t. a given functional behaviour are interesting related topics, which
are the subject of ongoing research but outside the scope of the present work.

6.1 The Orc notation

The orchestration language Orc of Misra and Cook [4] is targeted at the
description of systems where the challenge lies in organising a set of compu-
tations, rather than in the computations themselves. Orc has, as primitive, the
notion of a site call, which is intended to represent basic computations. A site,
either returns a single value or remains silent. Three operators (plus recursion)
are provided for the orchestration of site calls:
Sequential composition: E1 > x > E2(x) evaluates E1, receives a result
x, calls E2 with parameter x. If E1 produces two results, say a and b, then
E2 is evaluated twice, once with argument a and once with argument b. The
abbreviation E1 ≫ E2 is used for E1 > x > E2 when evaluation of E2 is
independent of x.
Parallel composition: (E1 E2) evaluates E1 and E2 in parallel. Both evalu-
ations may produce replies. Evaluation of the expression returns the merged
output streams of E1 and E2.
Asymmetric parallel composition: E1 where x :∈ E2 begins evaluation of
both E1 and x :∈ E2 in parallel. Expression E1 may name x in some of its site
calls. Evaluation of E1 may proceed until a dependency on x is encountered;
evaluation is then suspended. The first value delivered by E2 is returned in x;
evaluation of E1 can proceed and the thread E2 is terminated.

Orc has a number of special sites: “0” never responds; “if b” returns a signal
if b is true and remains silent otherwise; “let” always publishes its argument.

Finally, while Orc does not have an explicit concept of “process”, processes
may be represented as expressions which, typically, name channels that are
shared with other expressions. In Orc a channel is represented by a site [4].
c.put(m) adds m to the end of the (FIFO) channel and publishes a signal. If
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the channel is non-empty c.get publishes the value at the head and removes it;
otherwise the caller of c.get suspends until a value is available.

6.2 The Description of Skeletons in Orc

Assume that data is sent by an interface S along a number, N , of channels
ini to N workers Wi. Each worker processes its data and sends the result along
a channel outi to interface C (see Fig. 1). The distribution of data by S to the
channels may be based on various algorithms depending on the nature of the
overall task: see below.

Assume that data is a list of items to be processed; #data is the number of
items in data; in is a list of N channels connecting the port S with the workers.
out is a list of N channels connecting the port C with the workers. For a list, l,
head(l) returns the head of (non-empty) l; tail(l) returns the tail of (non-empty)
l. Denote by li the ith element of the list l. The skeleton system depicted in
Fig. 1 may be defined in Orc as follows:

system(data, S, G, W, in, out, N) ≡
S(data, in) | (|i : 1 ≤ i ≤ N : Wi(ini, outi)) | C(out)

Wi(ini, outi) ≡
ini.get > tk > process(tk) > r > (outi.put(r) |Wi(ini, outi))

Server Interface S. The interface S distributes the data in sequence across
the channels, ch, according to a distribution policy that can be substituted by
the expression broadcast, unicast, or DP. The auxiliary expression next is used
for synchronisation.

S(data, ch) ≡ if data = []≫ 0
| if data 6= []≫ distribution(head(data))≫ S(tail(data), ch))

next(h1, . . . , hN ) ≡ let 1

The broadcast sends each item of data to all of the workers.
broadcast(item) ≡ next(h1, . . . , hN ) where h1 :∈ ch1.put(item)

. . .

hN :∈ chN .put(item)

The unicast sends each item to a single worker Wf(i) where the index i is chosen
in a list [1 . . . N ]. The function f is assumed to be stateful (e.g. successive calls
to f can scan the list).

unicast(data) ≡ chf(i).put(x)≫ let 1

The DP describes the data-parallel scatter. Assume that #data is a multiple of
N (for simplicity), and the slice(data,i) returns the ith slice of data, where each
slice is of length #data/N . The actual definition of “ith slice” may vary, but is
abstracted here in the function slice. For example, if the first slice corresponds
to the first #data/N items in data, etc. then the distribution is round-robin. In
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the specification given, the data is divided into N slices and each slice is sent
on one of the channels.

DP (x) ≡ next(h1, . . . , hN ) where h1 :∈ ch1.put(slice(x, 1))
. . .

hN :∈ chN .put(slice(x, N))

Client interface C. Here interface C receives an item from each worker
Wi along channel chi and, when it has an item from every worker, applies a
collection policy. We exemplify here reduce and select policies.

C(ch) ≡ collection(ch)≫ C(ch)

The reduce function may take an average, select the median, etc. (Note; it is
assumed here that all workers supply results; otherwise timeouts could be used
to avoid starvation.)

collection(ch) ≡ reduce(h1, . . . , hN ) where h1 :∈ ch1.get

. . .

hN :∈ chN .get

Alternatively, the port C may non-deterministically select a single data item
from one worker and discard the rest.

collection(ch) ≡ select(r) where r :∈ (| i : 1 ≤ i ≤ N : chi.get)

In all of the presented cases it is easy to verify that the functional behaviour is
independent of N , provided W is stateless. Therefore, all management policies
that change the value of N do not alter the functional behaviour, and can thus
be considered correct.

7. Conclusion

The challenge of autonomicity in the context of component-based devel-
opment of grid software is substantial. Building into components autonomic
capability typically impairs their reusability. We have proposed behavioural
skeletons as a compromise: being skeletons they support reuse, while their
parametrisation allows the controlled adaptation needed to achieve dynamic ad-
justment of QoS while preserving functionality. We have presented a significant
set of skeletons, together with their formal Orc functional behaviour description
and self-management strategies. We have described how these concepts can be
applied and implemented within the GCM. The presented behavioural skeletons
have been implemented in GCM-ProActive [6], in the framework of the Grid-
COMP project2 and are currently under experimental evaluation. Preliminary
results, not presented in this work, confirm the feasibility of the approach.

2http://gridcomp.ercim.org, an EU STREP project aimed at providing an open source, reference
implementation of the GCM.
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1. Introduction.

Component models enable modular design of software applications that can
be easily reused and combined, ensuring greater reliability. This is important
in distributed systems where asynchronous components must be taken into
consideration, especially when there is need for a dynamic re-configuration.
The Grid Component Model (GCM) [12]based on Fractal is the one chosen
for our research. In these models, components interact together by being
bound through interfaces. However, there is a further need for a method which
ensures correct composition and behaviour of components. For the specification
of behaviour we can use a rich temporal framework [11] with subsequent
application of either model checking or deductive reasoning as a verification
technique. Model checking [7], which verifies the properties of the components
against the specification, has already been tested in various circumstances, one
particular application of this method been tested in [2]. Model checking is
a powerful and well established technique allowing to incorporate a number
of algorithms and tools to deal even with the famous state explosion problem.
However, if applied to a component system, it has one indicative drawback, due
to its explorative nature, namely, it cannot consider the environment in which a
component system has been developed. At the same time, in building a large
scale distributed system, we cannot afford anymore not to take into consideration
the entire infrastructure. Deductive methods, on the other hand, can deal with
such large systems and furthermore, can be applied to re-configuration scenarios.
In our earlier work [1] we applied a specific deductive technique, the temporal
resolution method [5] to a simple component model. The complexity of the
resolution based verification turned out to be high. The analogous method for the
linear-time setting has been recently improved in [8] by the modification of the
underlying specification language to obtain a polynomial satisfiability checking
complexity. In this paper we propose a new framework for the specification of
the re-configuration process: the extension of the temporal specification by the
deontic modalities [14]. This enriches the expressive capacities of our formal
specification by allowing to represent, additionally, a behaviour protocol.

The paper is organised as follows. In §2 we introduce the architecture and
give an informal description of the main concepts: re-configuration (§2.1) and
model update (§2.2). Further, in §3 we introduce these concepts formally: in
§3.1 we describe the deontic extension of ECTL+ called ECTL+

D, then, in §3.2
define a concept of deontic temporal specification (DTS) and reconfiguration,
and in §3.3 provide a specification example. Next, in §4 we describe a resolution
based verification technique, introducing new deontic resolution rules and
providing an example refutation. Finally, in §5, we give concluding remarks
and identify future work.
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2. Architecture

We identify three main parts of the architecture: the primitive components,
their composition into composite components through the Architecture Descrip-
tion Language (ADL) file and the infrastructure (see Figure 1).

Figure 1. Architecture

The first two are combined to deduce the stateful component system be-

haviour - a high-level behaviour distinct from the one of a single component,
which we assume to be already formally verified through other techniques being
recently researched. The specification is partially given as an input by the user
in the case of primitive components, and partially automatically extrapolated
using different sources, such as source code and the ADL file. The infrastructure
is specified mainly according to the user’s need, and following well defined and
accepted constrains such as those for safety, fairness, etc. [15] and in relation to
the resources required and services provided. The formal specification derived
through this process is a fusion of deontic and computation tree temporal logic,
extended from the previous developments in [1], which is a suitable input format
for our deductive reasoning tool. The properties to be specified and verified by
this techniques are the ones which are not possible to be considered when a
system is specified in a static way, this includes but is not limited to: presence
of resources and services, availability of distributed components, etc.

In the classical approach to component behaviour specification, the term
"behaviour" is referred to the inner component’s functionality - if the compo-
nent is supposed to calculate the factorial, is it doing it correctly? When we
consider the stateful component system behaviour instead, we are taking into
consideration a different matter: we are looking for those requirements that will
make the component "behaving correctly". As a simple example let us consider
a parser which checks if all the libraries required by the component are present
to calculate the factorial. Furthermore, what happens when we talk about a
distributed system, where changes might be needed to be done at runtime?
What if we require to replace a component, but the component we want to
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replace should not be stopped? We have taken into consideration these types of
situations while developing a specification procedure. We analyse the life cycle
of a component and define its states in a formal way so that they can be used
in the system specification. We consider past developments within the GCM
and other state aware grid systems [16]to define a set of states to be generated
that would monitored by a specific software [13]. This lifecycle is restricted,
in fact it only models the deployment state of the system (and, consequently,
the transitions of its states during the life), not its operational characteristics.
For example, once a component is in running state, it is available. On the other
hand, the service may fail for other unforeseen circumstances (hence the need
for a component monitoring system during runtime which will report a need for
changes into the state behaviour specification).

System/Infrastructure Behaviour. To specify the behaviour of a stateful
component system, we need, first of all, information on the architecture and
hierarchical components structure, the information flow, the possible require-
ments, and external requests. It is possible to extrapolate interface and bindings
information from the XML based ADL file (as similarly outlined in [16]). This
gives us an idea of the flow of the system; the user might need to refine this
process, for example to keep significant parameters only or add new parameters.
On the other hand, other component’s requirements must be taken directly from
the component’s definitions. Since one of the GridComp functionalities will
include a GCM parser to build component models, we will be able to reuse
some of the data it will provide to blueprint these requirements, leaving the
task to fill in the gaps to a programmer. The infrastructure can represent a
general purpose environment based on some common grounds, or a specific
one, defined by the programmer. Note that in the former case, infrastructure
must, of course, leave room for further expansion and adaptation depending on
the programmer’s need.

Deontic extension of specification. We develop a specification language
based on the fusion of Computation Tree Logic (CTL) and deontic logic to
represent the properties of a behaviour protocol of a component system. The
requirements of the protocol are understood as norms and specified in terms of
deontic modalities, "obligation" and "permission". Note that the introduction
of this deontic dimension not only increases the expressiveness of the system
capturing the normative nature of the specification but also allows us to approach
the reconfiguration problem in a novel way.

2.1 Re-Configuration

We focus our attention on the critical aspect of re-configuration. We begin by
clarifying the term re-configuration used in this paper: we refer re-configuration
to the process through which a system halts operation under its current source
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specification and begins operation under a different target specification [17], and
more precisely after the deployment has taken place (dynamic reconfiguration).
Some examples include the replacement of a software component by the user,
or an automated healing process activated by the system itself. In either of these
cases we consider the dynamic reconfiguration process as an unforeseen action
at development time (known as ad-hoc reconfiguration [3]). When the system is
deployed, the verification tool will run continuously and the system will report
back the current states for model mapping; if a re-configuration procedure
is requested or inconsistency detected, the healing process is triggered. The
dynamic re-configuration process works in a circular way [Figure: 2] and it is
divided into three major steps detailed below. The approach here is to specify
general invariants for the infrastructure and to accept any change to the system,
as long as these invariants hold. We assume that the infrastructure has some
pre-defined set of norms which define the constraints for the system, in order to
ensure system safety, mission success, or other crucial system properties which
are critical especially in distributed systems.

Figure 2. Re-Configuration Cycle

Model update request. A model update request can be triggered by a user’s
intention to re-configure the system, or by an inconsistency detection from the
verification tool. It refers in the model as a change to the behaviour specification
and it is constrained by the infrastructure restrictions. For example, the user
might want to upgrade a component, but these changes must conform to the
limitations set for such component. If the changes themselves are safe for the
system, the tool passes to the next step.

Model mapping. For the verification process to understand its current state
in the temporal tree, there is a need for a constant ‘model mapping’; in other
words, a background process needs to be present in order to map the structure
of the system into a model tree. This can be easily implemented alongside with
a current monitoring system which will keep track of this mapping indicating
which parts of the system are currently in which states in the model tree [4].
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This process is essential to ensure that no ‘past’ states are misused by the tool
during the healing process.

2.2 Model Update

If the model behaviour needs to be updated according to the new external
input parts of the system specification need to be changed. This process is the
key to this type of model update architecture and is necessary because, unlike
model revision in which the description is simply corrected but the overall
system remains unchanged, by updating our specification we are fundamentally
changing the system by adding, deleting and replacing states in the model
behaviour [9]. Here different types of changes are dealt with in a similar
faction, independently from the origin of the update (external user input or self
healing process). The behaviour specification is ‘extended’ to a new type of
specification and the verification process is resumed from this point forward
[Figure: 3]. This model update process consists of:

Figure 3. Model Update

(i) Norms/Invariant check. Utilise norms and invariants in the specification
for constraints on the set of states to be updated. Here we detect the deontic
properties in the specification which could be utilised in the healing process.

(ii) Compatibility check. Check if the supplied update to the model con-
forms with the the set of states to be updated, in other words, the system must
check for the presence of the standard bindings of the components, controllers,
etc; if so, the model is updated, otherwise, the healing is triggered.

(iii) Healing process. Search the tree model for a set of states which conform
with the norms and invariants, and is applicable for this set of states. Note that
candidate states for such an update in relation for some state si, do not have to
be in an ‘achievable’ future of si, i.e. do not have to belong to a subtree with
the root si, but only have to be ‘accessible’ from the current state according
to the norms set by the infrastructure. The candidate set of states (or a more
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readable parsed version) is reported to the user/developer as a possible solution
to the inconsistency detected. (Note that healing is also triggered if there was
no supplied update as in the case of inconsistency detection).

3. Deontic Extension of the Specification Language

In this paper we introduce a new specification formalism, Temporal Deontic
Specification (TDS). We assume that the specification of a component model
now is either written directly in this new framework of TDS or is initially
given in the deontic extension of the logic ECTL+ called ECTL+

D and then is
converted into the TDS. Since the structure of TDS is similar to the SNFCTL

we are able to subsequently apply the resolution based verification technique
which must be also extended to cope with the normative dimension.

Note that the introduction of this deontic dimension not only increases the
expressiveness of the system capturing the normative nature of the specification
but also allows us to approach the reconfiguration problem in a novel way.

3.1 ECTL+

D
Syntax and Semantic

In the language of ECTL+
D, where formulae are built from the set, Prop,

of atomic propositions p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . . , we use the fol-
lowing symbols: classical operators: ¬,∧,⇒,∨; temporal operators: –
‘always in the future’; ♦ – ‘at sometime in the future’; h– ‘at the next moment
in time’; U – ‘until’; W – ‘unless’; and path quantifiers: A – ‘for any future
path; E – ‘for some future path.

For the deontic part we assume a set Ag = {a, b, c . . . } of agents (processes),
which we associate with deontic modalities Oa(ϕ) read as ‘ϕ is obligatory for
an agent a’ and Pa(ϕ) read as ‘ϕ is permitted for an agent a’.

In the syntax of ECTL+
D we distinguish state (S) and path (P ) formulae,

such that S are well formed formulae. These classes of formulae are inductively
defined below (where C is a formula of classical propositional logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP |PaS|OaS
P ::= P ∧ P |P ∨ P |P ⇒ P |¬P | S|♦S| hS|S U S|S W S

| ♦S|♦ S

Definition 1 (literal, modal literal) A literal is either p, or ¬p for

p is a proposition. A modal literal is either Oil, ¬Oil, P il, ¬P il where l is a

literal and i ∈ Ag.

ECTL+
D Semantics. We first introduce the notation of tree structures, the

underlying structures of time assumed for branching-time logics.

Definition 2 A tree is a pair (S, R), where S is a set of states and R ⊆ S×S
is a relation between states of S such that s0 ∈ S is a unique root node, i.e.
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there is no state si ∈ S such that R(si, s0); for every si ∈ S there exists sj ∈ S
such that R(si, sj); for every si, sj , sk ∈ S, if R(si, sk) and R(sj , sk) then

si = sj .

A path, χsi
is a sequence of states si, si+1, si+2 . . . such that for all j ≥ i,

(sj , sj+1) ∈ R. Let χ be a family of all paths of M. A path χs0 ∈ χ is called a
fullpath. Let X be a family of all fullpaths of M. Given a path χsi

and a state
sj ∈ χsi

, (i < j) we term a finite subsequence [si, sj ] = si, si+1, . . . , sj of
χsi

a prefix of a path χsi
and an infinite sub-sequence sj , sj+1, sj+2 . . . of χsi

a suffix of a path χsi
abbreviated Suf(χsi

, sj).
Following [11], without loss of generality, we assume that underlying tree

models are of at most countable branching.

Definition 3 (Total countable ω-tree) A countable ω-tree, τω, is a

tree (S, R) with the family of all fullpaths, X , which satisfies the following

conditions: each fullpath is isomorphic to natural numbers; every state sm ∈ S
has a countable number of successors; X is R-generable [11], i.e. for every

state sm ∈ S, there exists χn ∈ X such that sm ∈ χn, and for every sequence

χn = s0, s1, s2 . . . the following is true: χn ∈ X if, and only if, for every

m (1 ≤ m), R(sm, sm+1).

Since in ω trees fullpaths are isomorphic to natural numbers, in the rest of
the paper we will abbreviate the relation R as ≤.

Next, for the interpretation of deontic operators, we introduce a binary agent
accessibility relation.

Definition 4 (Deontic Accessibility Relation) Given a countable

total tree τω = (S,≤), a binary agent accessibility relation Di ⊆ S × S, for

each agent i ∈ Ag, satisfies the following properties: it is serial (for any k ∈ S,

there exists l ∈ S such that Di(k, l)), transitive (for any k, l,m ∈ S, if Di(k, l)
and Di(l,m) then Di(k, m)), and Euclidian (for any k, l,m ∈ S, if Di(k, l)
and Di(k, m) then Di(l,m)).

Let (S,≤) be a total countable ω-tree with a root s0 defined as in Def 3, X
be a set of all fullpaths, L : S × Prop −→ {true , false} be an interpretation
function mapping atomic propositional symbols to truth values at each state,
and every Ri ⊆ S × S (i ∈ 1, . . . , n) be an agent accessibility relation defined
as in Def 4. Now a model structure for interpretation of ECTL+

D formulae is
M = 〈S,≤, s0, X, L, D1, . . . , Dn〉.

Reminding that since the underlying tree structures are R-generable, they are
suffix, fusion and limit closed [11], in Figure 4 we define a relation ‘|=’, which
evaluates well-formed ECTL+

D formulae at a state sm in a model M.

Definition 5 (Satisfiability) A well-formed ECTL+
D formula, B, is sat-

isfiable if, and only if, there exists a model M such that 〈M, s0〉 |= B.
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〈M, sm〉 |= p iff p ∈ L(sm), for p ∈ Prop
〈M, sm〉 |= AB iff for each χsm , 〈M, χsm〉 |= B
〈M, sm〉 |= EB iff there exists χsm such that

〈M, χsm〉 |= B
〈M, χsm〉 |= A iff 〈M, sm〉 |= A, for state formula A
〈M, χsm〉 |= B iff for each sn ∈ χsm , if m ≤ n then

〈M, Suf(χsm , sn)〉 |= B
〈M, χsm〉 |= hB iff 〈M, Suf(χsm , sm+1)〉 |= B
〈M, χsm〉 |= AU B iff there exists sn ∈ χsm such that m ≤ n

and 〈M, Suf(χsm , sn)〉 |= B
and for each sk ∈ χsm , if m ≤ k < n
then 〈M, Suf(χsm , sk)〉 |= A

〈M, χsm〉 |= AW B iff 〈M, χsm〉 |= A or 〈M, χsm〉 |= AU B
〈M, sm〉 |= OaB iff for each sn ∈ S, if Da(m, n) then

〈M, sn〉 |= B
〈M, sm〉 |= PaB iff there exists sn ∈ S, such that Da(m, n)

and 〈M, sn〉 |= B

Figure 4. ECTL+
D semantics

Definition 6 (Validity) A well-formed ECTL+
D formula, B, is valid if,

and only if, it is satisfied in every possible model.

3.2 Reconfiguration formalisation

To define a concept of propositional deontic temporal specification we extend
a normal form defined for the logic ECTL+, SNFCTL, which was developed in
[5–6]. Recall that the core idea of the normal form is to extract from a given
formula the following three types of constraints. Initial constraints represent
information relevant to the initial moment of time, the root of a tree. Step

constraints of the form indicate what will happen at the successor state(s) given
that some conditions are satisfied ‘now’. Finally, sometime constraints keep
track on any eventuality, again, given that some conditions are satisfied ‘now’.

The SNFD
CTL language is obtained from the ECTL+

D language by omitting
the U and W operators, and adding classically defined constants true and
false, and a new operator, start (‘at the initial moment of time’) defined as
〈M, si〉 |= start iff i = 0.

Similarly to SNFCTL, we incorporate the language for indices which is based
on the set of terms IND = {〈f〉, 〈g〉, 〈h〉, 〈LC(f)〉, 〈LC(g)〉, 〈LC(h)〉 . . . },
where f, g, h . . . denote constants. Thus, EA〈f〉 means that A holds on some
path labelled as 〈f〉. All formulae of SNFCTL of the type P ⇒ E hQ or
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P ⇒ E♦Q, where Q is a purely classical expression, are labelled with some
index.

Definition 7 (Deontic Temporal Specification - DTS) DTS is a

tuple 〈In, St, Ev, N, Lit〉 where In is the set of initial constraints, St is the

set of step constraints, Ev is the set of eventuality constraints, N is a set of

normative expressions, and Lit is the set of literal constraints, i.e. formulae that

are globally true. The structure of these constraints called clauses, is defined

below where each αi, βm, γ or le is a literal, true or false, de is either a literal

or a modal literal involving the O or P operators, and 〈ind〉 ∈ IND is some

index.

start⇒ ∨k
i=1 βi (In)

∧k
i=1 αi ⇒ A h[

∨n
m=1 βm] (St A)

∧k
i=1 αi ⇒ E h[

∨n
m=1 βm]〈ind〉 (St E)

∧k
i=1 αi ⇒A♦γ (Ev A)

∧k
i=1 αi⇒E♦γ〈LC(ind)〉 (Ev E)

true ⇒∨n
e=1 de (D)

true ⇒∨n
e=1 le (Lit)

In order to give a formalisation of the reconfiguration process we adapt the
approach given in [17] extending it to the usage of norms. We assume that we
are given a set of specification properties, Si be the start state and Sj the end
state of the system, a set of norms, N , and a set of invariants I . We can define a
reconfiguration, R, to be applicable when the following conditions holds:
- R commences when the initial state Si is not operating anymore and finishes
before the last state to be updated, Sj , becomes compliant with the system.
- Sj is the appropriate choice for the target specification at some point during R.
- Time for R is less or equal than the time for the transition from Si to Sj .
- The transition invariant(s), I , holds during R.
- The norms, N , for Sj are true at the time when R finishes.
- The lifetime of R is bounded by any two occurrences of the same specification.

The conditions for reconfigurations can be considered as a set of restriction,
which when true allow for the model to be simply replaced. The reconfiguration
conditions above give a clear indication to which states in the model can be
changed and when, while the temporal specification sets the conditions for the
change and defines the acceptable states which will replace the current ones.

3.3 Example Specification

Let us consider an example specification in which we use of norms for
reconfiguration, and where a component is requested to be updated.

Let r represent a property that a core component is bound to the system (one
that should be always available and should not be ‘touched’), and let q be a new
upgraded version of this core component. Now the expression A (r ⇒ Oi¬q)
stands for the obligation of not binding this new component once r is present.
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Assume that the system received a request for the permission to eventually
bind q. In the table below we summarise these conditions of the component
system and their representations in the language of TDS (note that w is a new
(auxiliary) proposition introduced to achieve the required form of DTS clauses).

Conditions of the System Constraints of DTS
Invariant Property r A ((start ⇒ r) ∧ (r ⇒ A fr))
Obligation of not binding new component q A (r ⇒ Oi¬q)

A request for the permission to eventually bind q A ((r ⇒ E♦w) ∧ (w ⇒ Piq))

4. Resolution Based Verification Technique

We first update the set of resolution rules developed for SNFCTL [6] by new
resolution rules capturing the deontic constraints. However, due to the lack of
space, here we present only those rules that will be involved into an example of
the refutation.

DRES
true ⇒ D ∨ Oil
true ⇒ D′ ∨ Pi¬l
true ⇒ D ∨ D′

SRES
A ⇒ A h(l ∨ D)
B ⇒ A h(¬l ∨ E)
A ∧ B ⇒ A h(D ∨ E)

TRES
A ⇒ A l
B ⇒ E♦l〈f〉
B ⇒ E(¬AW l)〈f〉

Resolution Example Here we present a resolution refutation for the set of
clauses of TDS obtained for the component system analysed in the previous
section.

TDS
1. start ⇒ r
2. r ⇒ A hr
3. r ⇒Oi¬q
4. r ⇒ E♦w〈f〉

5. w ⇒P iq

Proof
6. true ⇒¬r ∨ Oi¬q from 3
7. true ⇒¬w ∨ P iq from 5
8. true ⇒¬r ∨ ¬w DRES, 6, 7
9. start ⇒¬r ∨ ¬w temporising, 8

10. true ⇒ A h(¬r ∨ ¬w) temporising, 8
11. r ⇒ A hw SRES, 2, 10
12. r ⇒¬rW w TRES, 2, 11, 4
13. r ⇒ w ∨ ¬r W removal, 12
14. start ⇒¬r ∨ w W removal, 12
15. start ⇒ false SRES, 1, 9, 14

Here the reconfiguration request is rejected, hence no changes to the model.

5. Conclusions

The need for a safe and reliable way to reconfigure systems, especially dis-
tributed, resource depending and long running systems, has led to the need for
a formal way to describe and verify them before risking to take some action. In
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this paper we have given a definition for dynamic reconfiguration and a formal
way to specify the behaviour of a component model and its infrastructure. Fur-
thermore we have demonstrated how we can apply this formal specification to
model update techniques that conform to the definition of dynamic reconfigura-
tion given. The method introduced can also be used to prevent inconsistency
and suggest corrections to the system in a static and/or dynamic environment.
Indeed, if the verification technique discovers inconsistencies in the configu-
ration then the ‘healing’ process is triggered: the process of "re-configuring"
of the computation tree model that conforms the protocol. To ensure the con-
sistency we must supply the system with internal ‘clocks’ which is needed to
synchronise the states that belong to different branches of the computation tree.
We are planning to eventually embed all these features in a prototype plug-in for
the GridComp GIDE and test it on case studies proposed by industry partners.
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Abstract The GCM (Grid Component Model) is a component model that is being defined
by the CoreGRID institute on Programming Models; it is based on the Fractal
component model. It is intended at overcoming the insufficiencies of the existing
component systems when it comes to Grid computing. Its main characteristics
are: hierarchical composition, structured communications with support for asyn-
chrony, support for deployment, functional and non-functional (NF) adaptivity,
and autonomicity. As in the Fractal component model, the GCM distinguishes
controllers which implement NF concerns and are gathered in a membrane from
the functional content of the component.

This article presents a refinement of the Fractal/GCM model and an API for
adopting a component design of the component membranes, as suggested by the
GCM specification. The objective of this framework is to provide support for
both adaptivity and autonomicity of the component control part. In the design of
the model refinement and the API for NF components, we also take into account
hierarchical composition and distribution of the membrane, which is crucial
in the GCM. Our approach is flexible because it allows “classical” controllers
implemented by usual objects to coexist with highly dynamic and reconfigurable
controllers implemented as components.

Keywords: GCM, component control, separation of concerns, autonomicity.
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1. Introduction

Components running in dynamically changing execution environments need
to adapt to these environments. In Fractal [3] and GCM (Grid Component
Model) [4] component models, adaptation mechanisms are triggered by the non-
functional (NF) part of the components. This NF part, called the membrane,
is composed of controllers that implement NF concerns. Interactions with
execution environments may require complex relationships between controllers.
In this work we focus on the adaptability of the membrane. Examples include
changing communication protocols, updating security policies, or taking into
account new runtime environments in case of mobile components. Adaptability
implies that evolutions of the execution environments have to be detected and
acted upon, and may also imply interactions with the environment and with
other components for realizing the adaptation.

We want to provide tools for adapting controllers. This means that these
tools have to manage (re)configuration of controllers inside the membrane and
the interactions of the membrane with membranes of other components. For
this, we provide a model and an implementation, using a standard component-
oriented approach for both the application (functional) level and the control (NF)
level. Having a component-oriented approach for the non-functional aspects
also allows them to benefit from the structure, hierarchy and encapsulation
provided by a component-oriented approach.

In this paper, we propose to design NF concerns as compositions of com-
ponents as suggested in the GCM proposal. Our general objective is to allow
controllers implemented as components to be directly plugged in a component
membrane. These controllers take advantage of the properties of component
systems like reconfigurability, i.e. changing of the contained components and
their bindings. This allows components to be dynamically adapted in order to
suit changing environmental conditions. Indeed, among others, we aim at a
component platform appropriate for autonomic Grid applications; those appli-
cations aim to ensure some quality of services and other NF features without
being geared by an external entity.

In this paper we provide a twofold contribution: first, refinements of the Frac-
tal/GCM model concerning the structure of a membrane; second, a definition
and an implementation of an API that allows GCM membranes to be themselves
composed of components, possibly distributed. Both for efficiency and for flex-
ibility reasons, we provide an implementation where controllers can either be
classical objects or full components that could even be distributed. We believe
that this high level of flexibility is a great advantage of this approach over the
existing ones [8, 7]. Our model refinements also provide a better structure for
the membrane and a better decoupling between the membrane and its externals.
Finally, our approach gives the necessary tools for membrane reconfiguration,
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providing flexibility and evolution abilities. The API we present can be split in
three parts:

Methods dedicated to component instantiation: they allow the specification
of a NF type of a component, and the instantiation of NF components;

Methods for the management of the membrane: they consist in managing the
content, introspecting , and managing the life-cycle of the membrane. Those
methods are proposed as an extension of the Fractal component model, and
consequently of the GCM;

An optional set of methods allowing direct operations on the components

that compose the membrane: they allow introspection, bindings and life-
cycle management of the components inside the membrane, as would be
possible using the Fractal API extended with the previously mentioned
methods. They take into consideration the distributed nature of the GCM.

This paper is organized as follows. Section 2 presents refinements of the Frac-
tal/GCM model and the API for (re)configuring the membrane; then Section 3
presents the implementation of the API, using GCM/ProActive; Section 4
presents the related work; finally Section 5 concludes.

2. Componentizing Component Controllers

After an example motivating our approach, this section describes the structure
of the membrane and primitives for creating and manipulating NF components.
Indeed, the purpose of our approach is to design the management of the applica-
tion as a component system; that is why we want to adopt a GCM design for
the NF part of a component. Consequently, like any GCM component, the ones
inside the membrane can be distributed. Thanks to such a design, NF requests
can be triggered by external (NF) components in a much more structured way.
For autonomicity purposes, reconfigurations can be triggered by controllers
belonging to the membrane itself.

2.1 Motivating Example

Here we present a simple example that shows the advantages of componen-
tizing controllers of GCM components. In our example, we are considering
a naive solution for securing communications of a composite component. As
described in Figure 1, secure communications are implemented by three com-
ponents inside the membrane: Interceptor, Decrypt, and Alert. The scenario of
the example is the following: the composite component receives encrypted mes-
sages on its server functional interface. The goal is to decrypt those messages.
First, the incoming messages are intercepted by the Interceptor component.
It forwards all the intercepted communications to Decrypt, which can be an
off-the-shelf component (written by cryptography specialists) implementing a
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Functional Content

Membrane

    Alert

  Decrypt
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    Communications

  Alerts

 1

 2

 3
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Figure 1. Example: architecture of a naive solution for secure communications

specific decryption algorithm. The Decrypt component receives a key for de-
cryption through the non-functional server interface of the composite (interface
number 1 on the figure). If it successfully decrypts the message, the Decrypt
component sends it to the internal functional components, using the functional
internal client interface (2). If a problem during decryption occurs, the Decrypt
component sends a message to the Alert component. The Alert component is
charge to decide on how to react when a decryption fails. For example, it can
contact the sender (using the non-functional client interface – 3) and ask it to
send the message again. Another security policy would be to contact a “trust
and reputation” authority to signal a suspicious behaviour of the sender. The
Alert component is implemented by a developer who knows the security policy
of the system. In this example, we have three well-identified components, with
clear functionalities and connected through well-defined interfaces. Thus, we
can dynamically replace the Decrypt component by another one, implementing
a different decryption algorithm. Also, for changing the security policy of
the system, we can dynamically replace the Alert component and change its
connexions. Compared to a classical implementation of secure communications
(for example with objects), using components brings to the membrane a better
structure and reconfiguration possibilities. To summarize, componentizing the
membrane in this example provides dynamic adaptability and reconfiguration;
but also re-usability and composition from off-the-shelf components.

2.2 A Structure for Componentized Membranes

Figure 2 shows the structure we suggest for the component membrane. The
membrane (in gray) consists of one object controller and two component con-
trollers, the component controllers are connected together and with the outside
of the membrane by different bindings. For the moment, we do not specify
whether components are localized with the membrane, or distributed.

Before defining an API for managing components inside the membrane,
the definition of the membrane given by the GCM specification needs some
refinements. Those refinements, discussed in this section, provide more details
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hns = external NF server interface of the host component

Figure 2. New structure for the membrane of Fractal/GCM components

about the structure a membrane can adopt. Figure 2 represents the structure of
a membrane and gives a summary of the different kinds of interface roles and
bindings a GCM component can provide. As stated in the GCM specification,
NF interfaces are not only those specified in the Fractal specification, which are
only external server ones. Indeed, in order to be able to compose NF aspects,
the GCM requires the NF interfaces to share the same specification as the
functional ones: role, cardinality, and contingency. For example, in GCM, client
NF interfaces allow for the composition of NF aspects and reconfigurations
at the NF level. Our model is also flexible, as all server NF interfaces can be
implemented by both objects or components controllers.

All the interfaces showed in Figure 2 give the membrane a better structure
and enforce decoupling between the membrane and its externals. For example,
to connect nfc with fns, our model adds an additional stage: we have first to
perform binding b3, and then binding b9. This avoids nfc to be strongly coupled
with fns: to connect nfc to another fns, only binding b9 has to be changed.

In Figure 2, some of the links are represented with dashed arrows. Those
links are not real bindings but “alias” bindings (e.g. b3); the source interface is
the alias and it is “merged” with the destination interface. These bindings are
similar to the export/import bindings existing in Fractal (b6, b10) except that no
interception of the communications on these bindings is allowed.

Performance Issues While componentizing the membrane clearly improves
its programmability and its capacity to evolve, one can wonder what happens
to performance. First, as our design choice allows object controllers, one can
always keep the efficiency of crucial controllers by keeping them as objects.
Second, the overhead for using components instead of objects is very low if the
controllers components are local, and are negligible compared to the commu-
nication time, for example. Finally, if controllers components are distributed,
then there can be a significant overhead induced by the remote communica-
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tions, but if communications are asynchronous, and the component can run in
parallel with the membrane, this method can also induce a significant speedup,
and a better availability of the membrane. To summarize, controllers invoked
frequently and performing very short treatments, would be more efficiently
implemented by local objects or local components. For controllers called less
frequently or which involve long computations, making them distributed would
improve performances and availability of the membrane.

2.3 An API for (Re)configuring Non-functional Aspects

2.3.1 Non-functional Type and Non-functional Components. To type
check bindings between membranes, we have to extend the GCM model with a
new concept: the non functional type of a component. This type is defined as
the union of the types of NF interfaces the membrane exposes. To specify the
NF type of a component, we propose to overload the Fractal newFcInstance
method (the one to create functional components) as follows:

public Component newFcInstance(Type fType,Type nfType,

any contentDesc, any controllerDesc);

In this method, nfType represents the NF type of the component; it can
be specified by hand. Of course the standard Fractal type factory has to be
extended in order to support all possible roles of NF interfaces.

The NF type can also be specified within a configuration file: the controller
descriptor argument (controllerDesc) can be a file written in Architecture
Description Language (ADL) containing the whole description of the NF system
as we will suggest in Section 3.2.

Components inside the membrane are non-functional components. They are
similar to functional ones. However, their purpose is different because they deal
with NF aspects of the host component. Thus, in order to enforce separation of
concerns, we restrict the interactions between functional and NF components.
For example, a NF component cannot be included inside the functional content
of a composite. Inversely, a functional component cannot be added inside a
membrane. As a consequence, direct bindings between functional interfaces of
NF and functional components are forbidden.

To create NF components, we extend the common Fractal factories (generic
factory and ADL factory). For generic factory, we add a method named
newNFcInstance that creates this new kind of components:

public Component newNFcInstance(Type fType,Type nfType,

any contentDesc, any controllerDesc);

Parameters of this method are identical to its functional equivalent and
NF components are created the same way as functional ones. To create NF
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public void addNFSubComponent(Component component) throws

IllegalContentException;

public void removeNFSubComponent(Component component) throws

IllegalContentException, IllegalLifeCycleException,

NoSuchComponentException;

public Component[] getNFcSubComponents();

public Component getNFcSubComponent(string name) throws

NoSuchComponentException;

public void setControllerObject(string itf, any controllerclass)

throws NoSuchInterfaceException;

public void startMembrane() throws IllegalLifeCycleException;

public void stopMembrane() throws IllegalLifeCycleException;

%\end{lstlisting}

Figure 3. General purpose methods defined in MembraneController interface

components using Fractal ADL[2], developers need to modify or add some of
the modules within the factory. These modules depend on the implementation
of the newNFcInstance method and on the Fractal/GCM implementation.

2.3.2 General Purpose API. To manipulate components inside mem-
branes, we introduce primitives to perform basic operations like adding, re-
moving or getting a reference on a NF component. We also need to perform
calls on well-known Fractal controllers (life-cycle controller, binding controller,
. . . ) of these components. So, we extend Fractal/GCM specification by adding
a new controller called membrane controller. As we want it to manage all
the controllers, it is the only mandatory controller that has to belong to any
membrane. It allows the manual composition of membranes by adding the
desired controllers. The methods presented in Figure 3 are included in the
MembraneController interface; they are the core of the API and are sufficient
to perform all the basic manipulations inside the membrane. They add, remove,
or get a reference on a NF component. They also allow the management of
object controllers and membrane’s life-cycle. Referring to Fractal, this core API
implements a subset of the behavior of the life-cycle and content controllers
specific to the membrane. This core API can be included in any Fractal/GCM
implementation. Reconfigurations of NF components inside the membrane are
performed by calling standard Fractal controllers. The general purpose API
defines the following methods:

addNFSubComponent(Component component): adds the NF component
given as argument to the membrane;

removeNFSubComponent(Component component): removes the speci-
fied component from the membrane;
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public void bindNFc(String clientItf, String serverItf) throws

NoSuchInterfaceException, IllegalLifeCycleException,

IllegalBindingException, NoSuchComponentException;

public void bindNFc(String clientItf, Object serverItf) throws

NoSuchInterfaceException, IllegalLifeCycleException,

IllegalBindingException, NoSuchComponentException;

public void unbindNFc(String clientItf) throws

NoSuchInterfaceException,

IllegalLifeCycleException, llegalBindingException,

NoSuchComponentException;

public String[] listNFc(String component) throws

NoSuchComponentException; public Object lookupNFc(String itfname)

throws NoSuchInterfaceException,

NoSuchComponentException;

public void startNFc(String component) throws IllegalLifeCycleException,

NoSuchComponentException;

public void stopNFc(String component) throws

IllegalLifeCycleException, NoSuchComponentException; public String

getNFcState(String component) throws NoSuchComponentException;

Figure 4. Distribution specific methods implemented by MembraneController

getNFcSubComponents(): returns an array containing all the NF compo-
nents;
getNFcSubComponent(string name): returns the specified NF compo-
nent, the string argument is the name of the component;
setControllerObject(string itf, any controllerclass): sets re-
places an existing controller object inside the membrane. Itf specifies the
name of the control interface which has to be implemented by the controller
class, given as second parameter. Replacing a controller object at runtime
provides a very basic adaptivity of the membrane;
startMembrane(): starts the membrane, i.e. allows NF calls on the host
component to be served. This method can adopt a recursive behavior, by
starting the life-cycle of each NF component inside the membrane;
stopMembrane(): Stops the membrane, i.e. prevents NF calls on the host
component from being served except the ones on the membrane controller.
This method can adopt a recursive behavior, by stopping the life-cycle of
each NF component.

2.3.3 Distribution-specific API. Considering the distribution aspect of
the GCM, we provide an extension to the core API. As usual in distributed
programming paradigms, GCM objects/components can be accessed locally
or remotely. Remote references are accessible everywhere, while local refer-
ences are accessible only in a restricted address space. When returning a local
object/component outside its address space, there are two alternatives: create
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a remote reference on this entity; or make a copy of it. When considering a
copy of a NF local component, the NF calls are not consistent. If an invocation
on getNFcSubComponent(string name) returns a copy of the specified NF
component, calls performed on this copy will not be performed on the “real” NF
component inside the membrane. Figure 4 defines a set of methods that solves
this problem. As copies of local components result in inconsistent behavior, the
alternative we adopt is to address NF components by their names instead of their
references. These methods allow to make calls on the binding controller and on
the life-cycle controller of NF components that are hosted by the component
membrane. Currently, they don’t take into account the hierarchical aspect of
local NF components.

Somehow this new API can be considered as higher level operations com-
pared to the API of Figure 3. Indeed, they address the NF components and
call their controllers at once. For example, here is the Java code that binds
two components inside the membrane using the general purpose API. It binds
the interface “i1” of the component “nfComp1” inside the membrane to the
interface “i2” of the component “nfComp2”. Suppose mc is a reference to the
MembraneController of the host component.

Component nfComp1=mc.getNFcSubComponent("nfComp1");

Component nfComp2=mc.getNFcSubComponent("nfComp2");

Fractal.getBindingController(nfComp1).

bindFc("i1",nfComp2.getFcInterface("i2"));

But, if the code above is executed by an entity outside the membrane and
“nfComp1” is a passive component; then it is not the component “nfComp1”
inside the membrane that is bound to “nfComp2” but a copy of it. Using the API
of Figure 4, this binding can be realized by the following code, that binds the
component “nfComp1” correctly, regardless of whether it is active or passive

mc.bindNFc("nfComp1.i1","nfComp2.i2");

Similarly to the example above, all the methods of Figure 4 result in calls on
well-known Fractal controllers. Interfaces are represented as strings of the form
component.interface, where component is the name of the inner component and
interface is the name of its client or server interface. We use the name “mem-
brane” to represent the membrane of the host component, e.g. membrane.i1
is the NF interface i1 of the host component; in this case interface is the name
of an interface from the NF type. For example, bindNFc(string, string)

allows to perform the bindings: b1, b2, b4, b3, b9, b7 and b5 of Figure 2.
The two parts of our API (Figures 3 and 4) can be included in two separate

interfaces. Then developers can choose to implement one or both of these
interfaces inside each component.
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3. Implementation and Ongoing Work

3.1 Context

The ProActive library is a middleware for Grid computing, written in Java,
based on activities, with asynchronous communications and providing a deploy-
ment framework. A GCM/ProActive component is instantiated by an activity,
i.e. an active object, some passive objects, together with a request queue
and a single thread. Because the smallest unit of composition is an activity,
GCM/ProActive may be considered as a coarse-grained implementation of the
Fractal/GCM component model w.r.t. the Julia or the AOKell implementations,
where the smallest unit of composition is a (passive) object. A reference im-
plementation of the GCM is being implemented over ProActive, it follows its
programming model, especially concerning remote objects/components (called
active objects/components) and local objects/components (called passive ob-

jects/components).

3.2 Current Limitations and Future Work

Currently, we have implemented in GCM/ProActive the structure proposed
in the previous sections with most of the suggested interfaces and API. Our
MembraneController is able to manage NF active components and passive
objects as controllers. One of the strong points of our implementation is that
membranes can consist of both passive objects and active components.

We review below the current status of the implementation and the main
limitations that have to be addressed in the future.
Support Passive Components We do not support passive components for
the moment. We will investigate on strategies to include also passive NF
components. The idea consists in reusing components from existing frameworks
(e.g. Julia or AOKell).
Describing the membrane by an ADL For the moment, the only way to
instantiate NF components inside the membrane is programmatically: first
create a NF component with the newNFcInstance method, second add and
bind the NF components thanks to invocations on the membrane controller.
These operations can be performed either by an external entity (e.g. another
component or the framework that instantiates the host component) or by an
autonomic controller inside the membrane. In addition to this manual method,
we want the developer to be able to describe whole membrane in a separate
file, given as last argument of the newFcInstance method. This way, the
membrane can be designed separately from the functional content.

Considering the membrane as a composite component eases its description
with its set of interfaces, objects and internal components; it also allows us to
describe the membrane in an (extended) ADL language. External functional
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interfaces of this composite correspond to both internal and external NF inter-
faces of the host component. Then membrane’s description can be referenced
as the controllers description inside the functional ADL. This ADL “composite
view” is only necessary at design time: when the membrane is actually created,
the composite component should be “dissolved” inside its host component, i.e.
the host component will be the parent of the functional and NF components.
This avoids unnecessary intermediate interfaces, and having to deal with the
“membrane’s membrane”. In Figure 5, the membrane is a composite drawn
with a dashed border line which does not exist at runtime.
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Figure 5. The membrane is designed as a composite component

4. Related Work

First of all, our approach for adaptivity has the great advantage to allow the
usage of many related works. Indeed, by using a component-based approach
for the design and implementation of controllers, we can also apply existing
knowledge on self-adaptativity at the application level (e.g., [5]) to the NF level.

Other research teams have also proposed to provide a component-based
model for the implementation of membranes. Control microcomponents from
the Asbaco project [7] are specific components using a control API different
from Fractal’s, and requiring a specific ADL language (because microcompo-
nents are injected following an aspect oriented approach).

AOKell [8–9] proposes a component-based approach using the Fractal API
for engineering membranes, but their controller components cannot be dis-
tributed, neither collaborate with object controllers. Moreover, the membrane
is necessarily designed and executed as a composite component entailing one
additional level of indirection for requests toward the membrane components.
Recently, Julia’s Fractal implementation moved towards components in the
membrane; their approach is similar to the one of AOKell.
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In [6], the authors also advocate the componentization of the membranes in
order to enable the dynamic choice between various implementations of the
same technical service according to the runtime context of a Fractal component.

Our approach has some differences with the ones cited above. We provide
more details about the structure of a membrane. The first useful concept is the
NF type: it helps to decide at runtime which NF interfaces will be exposed by
the membrane and to type-check NF bindings. Moreover, new roles have been
introduced for NF interfaces. This helps developers to have more control over
NF bindings and to design the membrane separately from the functional content
with well defined communication points. Finally, our approach is more flexible,
because component and object controllers can coexist in the same membrane,
partially thanks to the absence of an intermediate component for the membrane.

5. Conclusion

In this paper, we provide refinements of the GCM component model, an API,
and a partial implementation allowing distributed components and local objects
to coexist as controllers of the same membrane. Model refinements provide a
better structure for the membrane. The API includes the specification of com-
ponent NF type, the creation of NF components, and membrane management
with the MembraneController. The flexible and adaptable membrane design
presented in this article provides a basis for easing the dynamic management of
interactions between controllers of the same or distinct components. Including
the future work presented in Section 3.2, we plan to experiment some autonomic
adaptation scenarios. Thanks to these scenarios, we will evaluate the capability
of the membrane to orchestrate two kinds of reconfigurations: reconfiguration
of the functional inner component system, following the idea of hierarchical
autonomic decision paths [1]; and reconfiguration of the membrane itself when
the adaptation is related to NF properties of the host component.
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Abstract

Nowadays, programming grid applications is still a major challenge. Several
systems, tools and environments have appeared to allow end-users to describe
applications without dealing with the complexity of the grid infrastructure. An
application description in such environments is done through high level languages
such as the Grid Concurrent Language (Gricol). Independently of the applica-
tion domain, this language enables the description of highly complex scientific
experiments. While such a high level language is offered to end-users, the ques-
tion of how to implement it is raised. The contribution of this paper is to analyze
the support of a Gricol application within component models, in particular the
support of its temporal composition represented by a control flow construction.
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1. Introduction

The development of grid technologies provides technical possibilities for
dealing with compute-intensive applications. As a consequence, scientists
and engineers are producing an increasing number of complex applications
which make use of distributed grid resources. However, the existing grid
services do not allow scientists to design complex applications on a high level of
organization. Hence, an integrated system is needed for describing applications
with a high level of abstraction so that it is not required to have a knowledge of
the specific features of the grid.

In our view, a language for programming experiments must fulfill the follow-
ing requirements: a) it must be of maximum simplicity (easy to understand and
use); b) it must provide maximum execution efficiency (parallelism) and c) it
must exploit full capabilities of supercomputer applications and to build from
them more complex constructions. Gricol is an example of such a language.

While high level programming languages are offered to end-users, the issue
is about the way to implement them. To handle underlying grid applications,
software component technology appears to be a promising approach. This
technology has been expanded through the appearance of several component
models like Cca [5], Ccm [11], Darwin [9], Fractal [6], Gcm [10],
Grid.it [3] or Sca [1]. They tend today to facilitate the design of large scale
scientific applications and to reduce the complexity of their building process.

The contribution of this paper is to analyze – and to reduce – the gap that
exists between Gricol and existing software component models in general.
Being from CoreGRID, Gcm is of particular interest. This gap is present due
to the fact that existing component models are only based on spatial compo-
sition while Gricol offers temporal composition. The long term goal is to
define a common component model for all the software layers as sought by the
CoreGRID Institute on Grid Systems, Tools, and Environments.

Section 2 presents Gricol while Section 3 analyzes the missing features
of existing component models. Section 4 presents our approach to extend
component models with temporal composition. Section 5 discusses how our
proposal fills the gap to support Gricol. Finally Section 6 concludes the paper.

2. Grid Concurrent Language

Gricol [7] is a parallel language for programming complex compute- and
data-intensive tasks without being tied to a specific application domain. It is a
graphical-based language in which the main elements are blocks and modules.
These elements have a defined internal structure and interact with each other
through defined interfaces. They allow wrapping functionalities in order to
utilize the capacities of supercomputer applications and to enable interactions
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with other language elements and structures. Program codes, which may be
generated in any language, are wrapped in a standard language capsule.

In addition, Gricol is a multi-tiered language. The multi-tiered model of
organization enables the user, when describing the experiment, to concentrate
primarily on the common logic of the experiment program, and subsequently
on the description of the individual fragments of the program. Gricol has a
two-layer model for the description of the experiment and an additional sub-
layer for the description of the repository of the experiment. The top level of
the experiment program, the control flow level, is intended for the description
of the logical stages of the experiment. The main elements of this level are
blocks and connection lines. The lower level, the data flow level, provides
a detailed description of components at the top level. The main elements of
the data flow level are program modules and database areas. The repository
sub-layer provides a common description of the database. The remainder of
this section presents an overview of the main Gricol layers.

2.1 Control flow level

To describe the logic of the experiment, the control flow level offers different
types of blocks: solver, condition, merge/synchro and message blocks. A solver
block is composed of nodes of data processing. It represents applications which
use numerical methods of modeling. The control blocks are either nodes of data
analysis or nodes for the synchronization of data computation processes. They
evaluate results and then choose a path for further experiment development.
Another important language element on the control flow level is the connection
line. Connection lines indicate the sequence of execution of blocks in the
experiment. There are two mechanisms of interaction between blocks: batch
and pipeline. If the connection line is red (solid) in color, control is passed to
the next block only after all runs in the previous block have finished (batch).
If the connection line is blue (dashed) in color, control is transferred to the
next block after each computation of an individual data set has been completed
(pipeline).

Figure 1(a) shows an example of an experiment program at the control flow
level. The start-block begins a parallel operation in solver blocks B.01 and
B.02. After execution of B.02, processes begin in solver blocks B.03 and
B.04. Each data set which has been computed in B.04 is evaluated in control
block B.05. The data sets meeting specified criterion are selected for further
computation. These operations are repeated until all data sets from the output of
B.04 have been evaluated. The data sets selected in this way are synchronized
by a merge/synchronize block with the corresponding data sets of the other
inputs of B.06. The final computation takes place in solver block B.07.
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Figure 1. Example of an experiment program.

2.2 Data flow level

A typical example of a solver block program is a modeling program which
cyclically computes a large number of input data sets. The solver block consists
of computation, replacement, parameterization modules and a database (Figure
1(b)). Computation modules are functional programs which organize and exe-
cute data processing on grid resources. Parameterization modules are modules
which generate parameter values. These values are transferred to computation
modules. The generation of parameter values takes place according to rules
specified by the user, either as mathematical formula or a list of parameter
values. Replacement modules are modules for remote parameterizations. A
more detailed description of the working of the modules is given in [7].

A typical control block program carries out an iterative analysis of the data
sets from previous steps of the experiment and selects either the direction for
the further development of the experiment or examines whether the input data
sets are ready for further computation, and subsequently synchronizes their
further processing. The condition block on Figure 1(c) consists of selecting,
filtering, testing, decision and updating modules, as well as a database. The
selecting and updating modules are used for the interaction between modules
and the database. A filtering module is used for additional selection of the input
data taken from the experiment database with the help of the selecting module.
Testing modules are programs which carry out a comparative analysis of input
data sets and check if the data arrays are in accordance with given criteria or
not. Depending on the logical evaluation by the testing module, the decision
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module makes possible to rename, re-index the input data sets, and to write
them in the database as long as they meet the conditions.

The remainder of this paper proposes a component based implementation of
Gricol. The next section studies how the different levels of Gricol can be
mapped on a component based composition.

3. Analysis of mapping Gricol to component models

In order to analyze the support of a Gricol application within existing
component models, let us split the analysis into several steps regarding the
principles used to compose such an application:

• Black boxes. When composing a Gricol application at the control or
data flow levels, blocks and modules are black boxes for which only external
links have to be specified. Therefore, blocks and modules can be straightfor-
wardly mapped to software components with ports.

• Hierarchical composition. This is illustrated by the composition of
blocks at a higher level and composition of modules at a lower level. Such a hi-
erarchical composition is already allowed by component models, like Fractal
or Gcm.

• Repository. This is a storage space where data are read or written. This
space is accessed from all experiment blocks and forms a global memory. It
can be of several natures depending on the resources environment that is used.
For instance, it can be a database or a distributed shared space. This memory
can be logically encapsulated inside a component and the access to stored data
can be done through getting/setting operations. It is also possible to use our
proposed approach [4] to allow transparent data sharing between components.
The proposed solution is based on the addition of a new family of ports named
data ports. The proposal illustrates also the use of a grid data-sharing service.

• Data flow composition. This describes data availability constraints to
perform a computation (solver block) or a decision (condition block). The
building process of a data flow specifies also the way of accessing data (through
parameterized, replacement, etc. modules). A communication between modules,
which are considered as components, is based on a request-reply principle. Such
a principle can be mapped to a getting operation with the profile DataType get().
Therefore, it is straightforward to associate such an operation to a classical
component port. As the user specifies the name of input and output data of a
module, these names can be used to identify associated ports.

• Control flow composition. This is the relevant type of composition that
motivates the present work. It specifies the time dependency between blocks.
That means, it builds the sequence (possibly conditional sequences) of the exe-
cution of blocks. As far as we know, such a temporal composition is not offered
by existing component models. In fact, according to supported communication
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types, only spatial composition is available. Such a communication can be either
1) a remote method invocation (Ccm, Cca or Fractal); 2) a message passing
(Darwin); 3) an event (Ccm) or 3) a data streaming (Grid.it). With these
communication types, a control flow composition can be simulated by explicit
coordination of the global application execution. However, this is done by the
programmer inside the application code. This solution may lead to a complex
code, especially for large applications with parallel computations. Hence, we
propose an extension of component models to overcome such a limitation.

4. Towards a component model with temporal
composition

The aim of the present work is to give an overview of our approach that
enables component models to easily support temporal composition. This work
is not restricted to support the specific case of Gricol, but it is generalized to
the support of workflow based compositions.

A workflow composition [12] is based on a control flow eventually coupled
with a data flow composition. That means, a control flow may be driven by some
data availability at the same level of composition. Several concepts are used in
a workflow context: tasks, task’s input and output data availability constraints
and control flow patterns like sequence, synchronization or condition.

As component models, workflow management systems like Triana [2] or
P-GRADE [9] aim to support large scale scientific applications. Nevertheless,
in order to support simply and efficiently multiple programming paradigms
inside one application, it may be suitable to have both spatial and temporal
composition within a same model.

This section presents how workflow concepts can be introduced in a compo-
nent based application. Only sequence for control flow patterns are specified
in this paper. We assume that other patterns are implicitly supported inside
components. We also use a Ccm based formalism to present our proposal. That
assumes a component to have a framework and a user view of a defined port.
The user view is either external (composition interfaces) or internal (interfaces
accessible from functional implementation).

4.1 Temporal ports model

In addition to classical (spatial) ports, we define another family of ports,
called temporal ports. A temporal port is associated to a data type and can be of
two kinds: input port, associated to an input data type, or output port, associated
to an output data type. The right part of Figure 2 shows a definition example
of the A component ports. These ports are implemented by the interfaces
represented on the left of Figure 2. First, the internal view of the A ports
allows the component’s implementation to retrieve (or set) an input (or output)
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// Internal view

interface UserInput-inA{
double get-inA () raises NoDataException;

}
interface UserOutput-outA {

void set-outA (double v);

}

// External view

interface InputPort-double{
void set-void ();

void set-double(double v);

}
interface Fmw_A{

InputPort get-ref-inA();

}
interface ExternOutput-outA{

void connect-outA (InputPort-double p);

}

Figure 2. Example of interfaces offered to the programmer by temporal ports and their usage.

data from (or on) the inA (or outA) port. Second, the external view defines a
connect-outA(..) operation to connect outA to a given p port with a compatible
data type. The InputPort-double interface associated to p allows its data to be
set to a given value. Finally, the set-void operation is defined for special use
cases, as will be explained below. It sets the port’s data to a void value. We
assume also that a user can specify a void type to define a temporal port.

4.2 Task model

The second concept introduced is a component task. A task is a predefined
operation with the profile: void task(). It is implemented by the user and is
automatically called by the framework. The start of this operation is constrained
by data reception on the component’s input ports. During the execution of the
task, the programmer can get and/or set input and output data values thanks to
the internal view of temporal ports. When the task() operation is terminated, the
framework checks if each output data was set by the user, otherwise the data
is marked with a special flag novalue. After that, no marked data are sent on
connected ports. Figure 2 gives an overview of the task model at work.

However, a programmer may want to produce more than one result on its
output ports. In this case, it is at the responsibility of the programmer to notify
the framework about the end of the generation of a set of output data. This
notification is done through an operation output-ready() implemented by the
framework. Therefore, when this operation is called, the framework performs
the described checking and sending processes. Symmetrically, we defined the
operation input-wait() to ask for getting multiple values on input ports.
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Figure 3. Example of an assembly with
spatial and temporal compositions.

Figure 4. Overview of the runtime life cycle
of a component.

As described here, temporal ports and task model seem to be close to data
stream usage. To avoid confusion, it is relevant to note that proposed concepts
are implicated in a temporal dimension, while it is not the case for events or
data streams. A component can define such spatial ports as well as temporal
ports, but only temporal ports direct the temporal behavior of an assembly.

4.3 Composition model

Within our proposal, an application can be based on spatial, temporal or
spatial and temporal compositions. The introduction of temporal ports has
no impact on a purely spatial composition, so the paper focuses on the use
of temporal ports. Figure 3 illustrates a coupled use of spatial and temporal
composition. The relevant property of such an assembly is that a control flow is
expressed. In fact, according to Section 4.1 and Section 4.2, a user can order
the execution of all tasks. For example, the connection of the output ports of
the A component to the input ports of the C component describes the fact that
an execution of C’s task follows an execution of A’s task.

However, to build a control flow, a start point must be determined. It is why
we defined a particular type of component named start. This component is
assumed to be provided by the framework and to be responsible for triggering
task executions on connected components. We defined also a component named
end for explicit specification of the end point of a task execution sequence in the
control flow. Therefore, from the start point of the control flow, if a sequence
reaches an instance of the end component or a component without output ports,
then the task of this component forms the end point of the sequence.

4.4 Runtime life cycle model

In existing component models, a component instance has a life state which
may evolve before and during an application execution. In our proposal, we
specified the following states: non-existent, created, inactive, active, running
and removed. The temporal composition model has a relevant impact on the
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specification of these states. This section presents the main states. All states
and state transitions are represented in Figure 4.

• Created. This defines the state when a component is instantiated. Three
creation processes are specified depending on the temporal composition of an
application. The creation can be static, lazy dynamic or pre-lazy dynamic. A
static instantiation is done before execution time, typically at the deployment
step. A lazy dynamic instantiation however, is done once the control flow
reaches the use of this instance, while pre-lazy instantiation may be done
before.

• Active. This determines the fact that a component instance is well con-
nected and configured. An instance is said to be configured when its functional
state is determined, for instance by setting attribute variables. When a compo-
nent is active, its provided functionality can be safely used. In our proposal,
input ports have a relevant role in the activation process. In fact, in addition to
determine a task’s inputs, input ports can be used for dynamic configuration
purposes. Therefore, we defined the following rule: if a component instance
has at least one input port, then, in addition to be connected and configured, this
instance is activated once input data on connected input ports are received.

• Removed. this state may be automatically reached once the component is
no longer attainable by the control flow during the execution, making it useless.

To summarize, each of the specified task, temporal port and life cycle models
has a strong relation with each other. They provide facilities to coordinate an
application execution and to express its dynamic evolution at the assembly level.

5. Model instantiation on the control flow level of Gricol

Now that a temporal composition model is proposed, let us present how a
Gricol control flow can be instantiated in our proposal.

Gricol defines two types of control connections: serial and pipeline con-
nections. Independently of the type, a Gricol connection can be mapped to a
connection of an output port to an input one. As there is no data flow specifi-
cation at the control flow level, the port types can be simply set to void. Now,
depending on the control connection type, the behavior of two connected blocks,
A and B for instance, is different. For a serial connection, A’s task waits the end
of its all computation processes before a void data is sent on its output port. For
a pipeline connection however, A’s task can notify the framework about the end
of a computation through the output-ready() operation (Section 4.2). B’s task
can react to the end of one A’s computation through the input-wait() operation.
It can be noted that, contrarily to Gricol, we do not distinguish the connection
type at the assembly level. This is not a limitation, as Gricol imposes such a
distinction for automatic functional code generation.
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6. Conclusion

Through the Grid Concurrent Language, this paper exposed missing features
in existing component models regarding the support of workflow applications.
As an attempt to overcome this limitation, we presented an overview of our
ongoing work on the support of temporal composition within a component
assembly model. In particular, we presented how a component model can
be extended to enable an assembly to express a control flow coupled with
a data flow composition. That was possible thanks to an additional family
of ports, named temporal ports. Only the specification of general principles
was presented. The next step is to provide a complete specification and its
instantiation on existing component models.
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Abstract Peer-to-peer organization of Grid resource discovery services would have several
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1. Introduction

In distributed Grid computing environments, several types of services are
needed for discovery of resources. For example, many Grids include information
services that aggregate general information about Grid resources, such as the
availability and current load of computational and storage resources. Other Grid
resource discovery services may be more specialized, for example, metadata
services that allow discovery of data items based on descriptive attributes and
replica location services that allow discovery of replicated data items.

Currently, most services for resource discovery in Grids are query-based
index services. These services may be centralized or distributed, and they
consist of one or more indexes that aggregate information about resources. Since
centralized indexes represent a single point of failure in the Grid environment,
it is often desirable to distribute resource discovery services. Typical Grid
resource discovery services are distributed using a hierarchical structure.

These resource discovery services have several common characteristics. A
front end for each service typically provides a query interface for clients. This
query interface may be general or specialized, with APIs that are specific to
the type of resource information stored in the service and that support common
queries. The back end for these services typically includes a database that
stores resource information. Each resource discovery service responds to client
queries by identifying resources that match desired properties specified in the
queries. These resource discovery services must be scalable, both in terms of
holding large amounts of resource information and supporting high query rates.
These services also need to be highly available and fault tolerant.

To achieve these properties, Grid resource discovery services are typically or-
ganized as hierarchies, where the top nodes represent starting points for queries.
These top nodes aggregate or replicate information from one or more lower-
level services and support queries on the aggregated information. Redundancy
is built into the hierarchy for increased scalability and fault tolerance.

As Grids grow larger, the number of distributed resources is also increasing.
It is challenging to organize resource discovery services into efficient hierarchies
that avoid the creation of cycles and ensure that nodes do not become hot spots.
Resource discovery services also require efficient flow of information in the
hierarchy and keeping that information as fresh as possible. Providing these
features complicates the design of distributed resource discovery services.

In recent years, there has been much research in peer-to-peer (P2P) systems,
in which the nodes of a system act as peers that create an overlay network to
exchange information. Peer-to-peer systems have several desirable properties,
including high scalability and reliability and the capability of self-healing the
P2P overlay when nodes fail or join the network [1-3]. Several researchers have
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observed that P2P and Grid paradigms have several goals in common [4] [5],
and some P2P Grid services have been developed [6-8].

In this paper, we describe the challenges and advantages of applying peer-to-
peer techniques to Grid resource discovery services. We describe two examples,
a Grid information service and a Grid replica location service, to which we
applied these techniques.

The remainder of this paper is organized as follows. The next section de-
scribes existing approaches to providing resource discovery in Grids. This
is followed by an overview of peer-to-peer technologies and a discussion of
challenges in applying these techniques to Grids. We describe our unstructured
P2P information service and structured P2P replica location service. Finally,
we discuss related work and conclude with a description of ongoing challenges
in merging P2P and Grid technologies.

2. Existing Grid Resource Discovery Services

Three general categories of resource discovery services are currently pro-
vided in Grid environments. These include information services that aggregate
information about the state of grid resources, replica location services that spe-
cialize in information about the locations of replicated data items, and metadata
services, which provide registration and discovery for descriptive attributes of
data sets. In this section, we give several examples of existing Grid resource
discovery systems.

2.1 Information Services: The GT4 Index Service

Applications running in the Grid need efficient access to information about
resources and services. This information can have a considerable impact on
scheduling decisions, replica selection, and planning for workflow execution.
Information about available resources and their characteristics is typically col-
lected by information services and served to applications via query/response
or publish/subscribe interfaces. Czaj-kowski et al. [9] discuss several issues
that affect the design of Grid Information Services. Requirements include ag-
gregating information from multiple types of services and processing different
types of queries across the information. Clients may query for explicitly named
resources or make attribute-based queries, such as requesting nodes with a
certain amount of computational power. Query results may include information
about the proximity of resources or the duration for which the information is
valid.

One example of a Grid information service is the Monitoring and Discovery
System (MDS) Index Service, which is part of the Globus Toolkit Version 4
(GT4). The Index Service collects, aggregates and publishes information from
other Grid services.
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An Index Service collects information from a variety of sources called aggre-
gator sources that can collect information using three methods: querying the
state of Grid resources; subscribing to resource state and collecting information
when notifications are received; or running executables that test the state of
resources and collecting the output.

Figure 1 shows the example of a two level hierarchy of MDS4 Index Services.
GT4 Index Services lower in the hierarchy periodically push a subset of their
information to one or more index services higher up in the hierarchy.

Figure 1. Example of a hierarchical configuration of GT4 Index

In a simple hierarchical configuration (Figure 1), indexes at the top of the
hierarchy subscribe to the state of local index services and replicate their in-
formation. Clients can query a top level index and immediately obtain query
results. This approach of replicating information in top level index services is
often taken in small grids.

Alternatively, each local index can publish a summary of its information,
and the top level index can subscribe to these summaries and publish them.
Query results from top level indexes are essentially pointers to the complete
information stored at local indexes. The client then queries local indexes until
it obtains the required information. This approach is appropriate for larger
grids where it might not be possible for a single top level index to replicate
all information from local indexes. This scheme also distributes the query
processing load. A top level index performs simpler queries on summary
information, while local indexes perform more complex queries.
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2.2 Replica Location Services

A Replica Location Service (RLS) provides functionality to register and
discover data replicas. When a user creates a new replica of a data object,
the user also registers the existence of the replica in the RLS by creating an
association between a logical name for the data item and the physical location
of the replica. An RLS client discovers data replicas by querying the catalog
based on logical identifiers for data, physical locations or user-defined attributes
associated with logical or physical names. In earlier work, Chervenak et al. [10]
proposed a parameterized RLS framework that allows users to deploy a range
of replica location services that make tradeoffs with respect to consistency,
space overhead, reliability, update costs, and query costs by varying six system
design parameters. A Replica Location Service implementation based on this
framework is available in the Globus Toolkit Versions 3 and 4. We have
demonstrated that this RLS implementation provides good performance and
scalability [11].

The Replica Location Service design consists of two components. Local
Replica Catalogs (LRCs) maintain consistent information about logical-to-target
mappings on a site or storage system, where the target of the mapping is usually
the physical file name of the replica. Replica Location Indexes (RLIs) aggregate
information about mappings contained in one or more LRCs. The RLI contains
mappings from logical names to one or more LRCs that in turn contain logical-
to-target mappings for those names. The RLS achieves reliability and load
balancing by deploying multiple and possibly redundant RLIs in a hierarchical,
distributed index. An example RLS deployment is shown in Figure 2.

Figure 2. Distributed Replica Location Service
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2.3 Metadata Services

Metadata is information that describes data sets. Metadata services allow
scientists to record information about the creation, transformation, meaning and
quality of data items and to discover data items based on these descriptive at-
tributes. In the past, scientists have largely relied on ad hoc methods (descriptive
file and directory names, lab notebooks, etc.) to record information about data
items. However, these methods do not scale to terabyte and petabyte data sets
consisting of millions of data items. Extensible, reliable, high performance Grid
services are required to support registration and query of metadata information.

Some physical level metadata relate to characteristics of data objects, such as
their size, access permissions, owners and modification information. Replication
metadata information, such as that stored in an RLS, describes the relationship
between logical data identifiers and one or more physical instances of the data.
Other metadata attributes describe the contents of data items, allowing the data
to be interpreted. This descriptive metadata may conform to an ontology agreed
upon by an application community. A special case of descriptive metadata
is provenance information, which records how data items are created and
transformed.

Many metadata services are centralized, because many applications require a
high degree of consistency for metadata information. This consistency is needed
because accurate identification of data items is essential for correct analysis of
experimental and simulation results. These services can also be distributed in
wide area Grid environments if more relaxed consistency can be tolerated by
applications.

Examples of Grid metadata services include the Metadata Catalog Service
[12, 13] and the MCAT metadata catalog for the Storage Resource Broker
project [14, 15].

3. Peer-to-Peer Systems

In peer-to-peer systems, service instances create an overlay network, and
queries and responses are forwarded and routed via this overlay. P2P overlays
are of two types, structured and unstructured. Some hybrid systems have
also been implemented. P2P systems of all types share characteristics of high
scalability and the ability to self-organize and self-heal after node failures in
the P2P network.

3.1 Structured P2P systems

A structured peer-to-peer overlay typically uses a mechanism such as a
distributed hash table to deterministically identify the node on which a particular
<key, value> pair will be stored and retrieved. Thus, structured P2P approaches
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are usually concerned with locating resources that can be named or identified
by keys [4]. Therefore, a structured P2P approach may be particularly well-
suited to Grid resource discovery services such as replica location services or
metadata services, where clients query for information associated with a globally
unique logical or physical data identifier. A structured approach may be less
appropriate for general Grid information services, where queries for information
about resources may not be associated with unique resource identifiers.

There has been extensive research in structured P2P approaches to informa-
tion services. Chord [1], Pastry [16], and CAN [3] are based on distributed hash
table (DHT) techniques. A significant advantage of DHT-based structured P2P
systems is that they provide strong bounds on query and update performance.

Recent systems [17] also allow attribute-based searches of complex infor-
mation such as RDF [18] using structured approaches. Cheema et al. [8]
developed a strategy for searches on multiple machine attributes on a structured
P2P network by representing resources as overlapping arcs on a DHT ring.

3.2 Unstructured P2P Systems

An unstructured P2P usually does not impose any constraints on links be-
tween nodes in the system. Whereas in DHT based structured overlays, nodes
peer only with other nodes that are ŞcloseŤ in the identifier space, in unstruc-
tured overlays, the choice of neighbors to peer with is less restrictive and is
often probabilistic or randomized.

Unstructured overlays do not create associations between nodes and links in
the system and the information stored in those nodes. By contrast, DHT based
P2P systems require that the information being stored can be converted into a
<key, value> format so that it can be forwarded to the node that manages the
corresponding key. Some publish subscribe systems create overlay tree networks
where each node forwards information along a specified link to propagate
information from publishers to subscribers. In contrast, unstructured P2P
systems do not require that information adhere to a particular format or be tied
to the structure of the overlay. Information is usually stored only at the node
where it was generated or replicated in a probabilistic manner. Query-response
pathways are also not well defined. Queries are propagated in the system using
flooding based algorithms, and responses are routed back on the same path as
the queries.

Napster [19], Gnutella [20] and Kazaa [21] are among the well known
unstructured P2P file sharing systems. P2P technologies have been successful
in these file sharing applications by allowing peers to host content, discover
content on other peers, and download that content.

These systems have been popular in the Internet community despite known
disadvantages such as the vulnerability of central indexes in Napster [22]
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and the high network loads imposed by GnutellaŠs flooding algorithms [23].
Optimizations of unstructured systems have been developed based on file and
query distributions and on the use of replication and caching.

Unstructured peer-to-peer networks cannot provide the same guarantees
provided by structured overlays regarding the number of hops taken by a query
message to reach a node that can answer the query, nor can unstructured systems
guarantee that results will be returned if they exist in the network. The time-to-
live field in the message dictates how far the message travels in the network, so
the message may not reach all nodes. Applications built on top of such systems
must be capable of dealing with these issues as they do with other failure modes.

3.3 Challenges in Applying P2P Techniques to Grid
Resource Discovery

While the convergence of peer-to-peer and Grid systems has long been
predicted, challenges remain in incorporating P2P techniques into production
Grid services.

One issue is the possible performance penalty of submitting a query to a wide
area peer-to-peer network versus submitting the query to a specialized resource
discovery service that maintains locality for related information. Resolving
queries in a P2P overlay may require multiple network hops. Structured P2P
networks, in particular, may distribute resource information widely in the
overlay, since the distribution is based on the hashed values of keys. This
distribution maintains a balance among the nodes in the overlay for the number
of mappings stored at each node, but the locality of related resource information
may be lost. By contrast, existing Grid resource discovery services often support
locality of related information. For example, in a typical Replica Location
Service, all mappings associated with files on a storage system are likely to be
stored in the same local catalog, so queries for files in a logical collection that
are co-located may be satisfied by a single local catalog. Similarly, existing
Grid information services tend to aggregate information about all the resources
at a site in a single index service.

Security issues also tend to be more of a concern in Grid environments
than in Internet file sharing applications. In Grids, access to resources and to
information about resources may need to be controlled. Authentication of users
as well as authorization decisions on discovery and access operations may be
required. By contrast, in file sharing P2P networks, typically any node can
query all other nodes to discover and download files, and any node can host
content and make it available to other nodes. We need a security model that
allows Grid resource discovery services to use peer-to-peer overlays safely.

There are additional practical challenges for applying P2P techniques to
Grid systems. It has taken several years for Grid resource discovery services



Peer-to-Peer Approaches to Grid Resource Discovery 67

to become sufficiently scalable and stable to support the requirements of Grid
systems. To support the higher scalability possible with P2P networks, we need
to further improve existing Grid services to support better service configuration
and dynamic deployment.

4. Applying Unstructured P2P Techniques to a Grid
Information Service

Next, we illustrate many of the issues we have identified for applying P2P
techniques to Grid resource discovery services by describing the design of a
P2P information service [7].

In our design, modified GT4 Indexes called P2P Indexes organize themselves
into an unstructured P2P overlay network. Queries from a user to any index in
the P2P system may be forwarded to other indexes, and query results are routed
back to the user. Our system differs from other P2P-based resource discovery
services [1-3, 8, 17] that use nodes in the overlay network to store and replicate
resource information. We use the P2P network only for self-organization and
query forwarding among P2P indexes, which are optimized to store resource
information and perform associated queries. We do not replicate information
via the overlay because resource information may change quickly and therefore
cannot be replicated easily. Each P2PIndex in our system can also be accessed
as a typical GT4 Index service without having to go through the P2P overlay.
In summary, our approach separates the routing of queries in the P2P overlay
from the storage and retrieval of information.

In the following sections, we describe several design issues for this system,
including our use of an unstructured overlay network, two performance opti-
mizations, and a multi-tier security model that facilitates the integration of P2P
and Grid services.

4.1 Unstructured P2P Overlay Network

We use an unstructured overlay network for the peer-to-peer GT4 Index
service. Unstructured networks are easy to build and support different opti-
mizations of the overlay at different regions in the network, such as higher
connectivity between certain nodes and locality-based modifications to the
topology. Most previous work in unstructured P2P networks has been in the
areas of file sharing or data storage systems rather than in information services.
Unstructured P2P networks are well-suited for information services like MDS4
that store arbitrary XML rather than information with a fixed schema. By
contrast, a DHT-based structured P2P overlay would need to generate hash keys
on values in every entry in the information service.

Our design differs from these approaches in that we do not make assumptions
about the distribution of queries or rely upon replication or caching. We assume
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that our P2P Index Services are updated via an out-of-band mechanism and that
only queries are propagated via the unstructured overlay.

Another reason we chose an unstructured overlay is that many structured
systems implicitly assume that all nodes in the system can store data originating
at other nodes. This may not be the case in Grids, where nodes may belong to
different administrative domains. Policy restrictions may prevent nodes from
storing information generated at other sites. By contrast, nodes in unstructured
P2P networks are not required to store information generated at other nodes.
If information is replicated via the overlay, each node may choose not to store
information originating at other nodes without affecting message forwarding
and routing.

4.2 Performance Optimizations

In an unstructured P2P system, the use of a flooding algorithm introduces the
problem of exponential growth in the number of messages sent in the network.
We discuss two optimizations that are designed to improve the performance of
our system.

Since information is not replicated via the P2P framework, query results are
not cached at intermediate nodes. However, a node could cache the queries
themselves and note which of its peers responded to each query. In a query
caching scheme similar to the learning-based strategy described by Iamnitchi
et al. [4], a node forwards a query to peers that responded to that query in
the past. We implement a scheme called query caching with probabilistic
forwarding, where each node deterministically forwards a query message to all
the peers specified in the cache that responded to the query in the past and also
probabilistically forwards the query to other peers. This may identify nodes
that have been recently updated and can now respond to the query.

Queries to an information service usually belong to two broad categories: gen-
eral attribute-based queries (e.g., Şwhich sites are running GridFTP servers?Ť)
and specific queries for resources (e.g., Şwhat is the URL for the GridFTP server
on node X?Ť). General queries are used to gather information, possibly to aid
in scheduling decisions, and therefore the client expects multiple responses.
Such queries will be forwarded to several nodes in the network (depending
on time-to-live, max-hops, etc.), even if other nodes have already responded.
These general queries may be optimized by forwarding the query in the network
before each node evaluates the query on its own contents. Using this early
forwarding scheme, each node can evaluate the query in parallel.

For more specific queries, the client expects a single response. In this
scenario, early forwarding may increase the number of messages being sent
in the network, so it may be better to evaluate the query locally first before
forwarding it to peers.
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Ideally, an application should be able to provide hints about whether a query
is general or specific to the P2P framework as part of the message. Each node
could use this information to make better routing choices.

4.3 Security Model

Next, we describe a security model for the use of peer-to-peer techniques
with Grid services.

Our model is based on the observation that grid applications are not usually
standalone applications. Whereas in file sharing applications such as KaZaA and
Gnutella, the P2P overlay is used for indexing and looking up file information as
well as the transfer of data, in grid applications this functionality is achieved via
several distinct grid services. In our model, different policies are used to control
access to different services and resources. The P2P Index Service provides
information about resources but not access to those resources, and therefore it
enforces only those policies related to retrieving information. Policies related
to accessing the resources themselves (submitting jobs, retrieving files, etc.) are
enforced by the services that provide that access.

This model can also be extended with a further level of indirection, to only
forward queries in the P2P layer but not route back the query response. Instead,
pointers are returned to those nodes that have the required information. The
user then interacts directly with those nodes to get the query responses, using
the security mechanisms required at those nodes.

Certain grids may choose to adopt a relaxed security model by allowing unau-
thenticated users to query for resource information and enforcing authentication
and authorization only when the resources are accessed.

4.4 Implementation and Performance

Figure 3 illustrates the implementation of the P2P Index service. The original
Globus Toolkit Version 4 (GT4) Index Service implementation is based on the
Web Services Resource Framework (WS-RF) standards [24]. This standard
allows state to be associated with Grid services as resource properties.

The GT4 Index Service is a WS-Resource that operates on a stateful In-
dexServiceResource. In our implementation, the P2P Index Service operates
on a P2PIndexServiceResource that is composed of an IndexServiceResource
and a P2PResource, as illustrated in Figure 3. The P2PResource component is
responsible for creating and maintaining the P2P overlay and for forwarding and
routing messages in the network. The P2PResource component maintains a list
of its peers identified by their endpoint references and a cache of the messages
it has seen identified by their message IDs. It also maintains a routing table
that stores the identity of the peer to which responses to each message must be
routed.
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Figure 3. The P2P Index Service

The P2P Index Services in the Grid organize themselves into an unstructured
P2P system using an approach similar to those used in file sharing applications.
The message format and the message forwarding algorithm used in our system
are similar to those used in Gnutella-like systems [20].

Queries from a user are forwarded to other P2P indexes, and the results
of processing queries at these indexes are routed back to the user via the
unstructured P2P overlay.

We also implemented query caching with probabilistic forwarding in our
system. Each node contains a configuration parameter that controls the proba-
bility with which a query is forwarded to a peer that did not respond to the same
query earlier. Setting this parameter to 0 is equivalent to enabling a pure query
caching scheme where queries are forwarded only to the peers that are listed in
the cache. Setting this parameter to 1 is equivalent to disabling the cache, since
in that case all queries are forwarded to all peers.

Finally, we implemented the early forwarding scheme described above. A
node configuration parameter determines whether that node checks for appli-
cation hints in the message and uses those hints to decide whether to perform
early forwarding to other nodes.

Performance measurements of the P2P Index Service [7] showed that using
the P2P layer adds a small and constant overhead to operations on the Index
Service and that providing a distributed P2P index allowed significant scalability
improvements compared to a single Index Service.
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5. Applying Structured P2P Techniques to Grid Replica
Location Services

In earlier work [6, 25], we implemented and evaluated a structured peer-to-
peer version of the Globus Replica Location Service. The goal of this work
was to take advantage of P2P techniques for more flexible organization of RLS
servers. In the RLS system currently supported in the Globus Toolkit, each
RLS deployment is statically configured. If a Replica Location Index service
fails, the Local Replica Catalogs that send state updates to those index services
have to be manually redirected. Using peer-to-peer techniques to self-organize
networks of RLS index services should provide more automated and flexible
membership management, which is desirable for larger RLS deployments and
dynamic environments where servers frequently join and leave the system.

For our implementation, we implemented a structured peer-to-peer network
among the Replica Location Index (RLI) nodes that contain logical-name, LRC
mappings. This design is consistent with the security model we have already
described, where we assume that resource discovery at the P2P RLI level
has less strict security requirements. Access to the logical-name, target-name
mappings in the Local Replica Catalog and to physical files requires stricter
security.

In the P2P RLS, we replicate mappings among the P2P RLI nodes, unlike
in the information service described in the last section. We are able to use a
structured overlay because it is easier to hash on logical names in the RLS than
on arbitrary XML content in information services. In addition, replica mappings
tend to be much less dynamic than resource information.

In our design, a peer-to-peer RLS server consists of an unchanged Local
Replica Catalog (LRC) that maintains consistent logical-name, target-name
mappings and a Peer-to-Peer Replica Location Index node (P-RLI) that main-
tains logical-name, LRC mappings. The P2P RLS design uses a Chord overlay
network [1] to self-organize P-RLI servers. Chord is a distributed hash table that
supports scalable key insertion and lookup. Each node has log (N) neighbors in
a network of N nodes. A key is stored on its successor node, the first node with
ID equal to or greater than key. Key insertion and lookup are achieved in log
(N) hops. Our implementation uses the Chord algorithm to store mappings of
logical names to LRC sites. It generates a Chord key for each logical name by
applying the SHA1 hash function and stores the logical-name, LRC mappings
for that logical name on the P-RLI successor node.

When a P-RLI node receives a query for LRC(s) that store mappings for
a logical name, it directly answers the query if it contains the corresponding
logical-name, LRC mapping(s). Otherwise, the P-RLI node routes query to the
root node that contains those mappings via the structured overlay network.
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After receiving a list of local replica catalogs from the P-RLI network,
the client queries LRCs directly for mappings from logical names to replica
locations.

We implemented a prototype of the P2P Replica Location Service that ex-
tends the RLS implementation in Globus Toolkit Versoin 3.0. The P-RLI server
implements the Chord protocol operations, including join, update, query, and
find successor operations, as well as operations for joining and stabilizing the
structured overlay. The Chord protocols are implemented on top of the RLS
remote procedure call layer.

We measured the performance of our P2P RLS system with up to 15 nodes
and verified that query and update latencies increase at rate of O(logN) with
size of overlay network, as expected. We also simulated the performance of
larger P-RLS networks. Finally, we demonstrated the advantages of replicating
mappings on multiple nodes, which results in a more even distribution of
mappings among nodes and improved load balancing for popular mappings.

6. Related Work

Earlier, we discussed related work on peer-to-peer systems. Here, we focus
specifically on related work in Grid resource discovery services.

6.1 P2P Grid Resource Discovery Services

Two systems closely relate to our P2P information and replica location
services: the GLARE system and another P2P replica location service.

Like our system, GLARE [26] uses the GT4 Index Service to discover sites in
the Grid. However, unlike our approach, GLARE indexes exchange information
with each other, organize themselves into peer groups and build a super-peer
overlay.

Ripeanu et. al [27] constructed a peer-to-peer overlay network of Replica
Location Services. Unlike our P2P RLS system, which uses a structured overlay
to forward queries to a node that can answer an LFN query, in this scheme, each
node distributes a digest of all LFNs registered at that node to all other nodes
in the overlay. Thus, each node maintains a compressed image of the global
system. When a client queries a node for a particular LFN mapping, the node
first checks its locally stored mappings and answers the query, if possible. If
not, the node checks its locally stored digests that summarize the contents of
remote nodes. Finally, if the node finds a remote node that matches the LFN, it
contacts that node to obtain the mappings.

6.2 Grid Information Systems

There have been several efforts to design efficient, reliable and scalable
monitoring and information services for large scale distributed systems.
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The previous version of the Globus Monitoring and Discovery Service
(MDS2) [9] is a hierarchical design. Information Providers push resource
information into Grid Resource Information Services which then push that
information to Grid Index Information Services.

The MonALISA system [28], or Monitoring Agents using a Large Integrated
Services Architecture, consists of autonomous, self-describing agent subsystems
that collect and process different types of information in a coordinated fashion.
The network servers hosting agent based services are connected via a P2P
network.

The Relational-Grid Monitoring Architecture (R-GMA [29]) is a monitoring
framework in which all published monitoring information appears as if it were
resident in a single, large, relational database.

Other Grid information services include Nagios [30], Ganglia [31] and
Hawkeye [32].

6.3 Replica Location and Metadata Services

The European DataGrid project implemented a different Replica Location
Service based on the RLS Framework [10] that was used as part of their replica
management architecture [33].

Several Grid systems merge replica and metadata management. These in-
clude the Storage Resource Broker [15], the Grid DataFarm [34], and the gLite
[35] systems that register and discover replicas using a metadata catalog. These
systems differ from the Globus Replica Location Service in several ways: they
use a centralized catalog for replica registration and discovery; this catalog also
contains logical metadata information that describes the content of data files,
which is deliberately kept separate in our system; and these systems use these
metadata catalogs to maintain consistency among replicas.

7. Conclusion

We have argued that a peer-to-peer organization of resource discovery ser-
vices would have several desirable features including high scalability, high
reliability, self-organization and self-healing. We described the design and
implementation of an unstructured P2P Information Service based on the GT4
Index Service that separates the routing of queries from data sharing in the
overlay. We also presented a structured P2P Replica Location Service that
replicates mappings in the overlay.

Challenging issues remain for applying P2P techniques to Grid resource
discovery issues. First, the choice of structured versus unstructured overlays
is likely to have a significant impact on the performance of queries for related
information. For the P2P Information Service, we opted to use an unstructured
overlay to maintain locality of related information in individual Index Services.
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However, in general, resolving queries in a P2P overlay may require multiple
network hops, which may increase query latency.

Second, we discussed security issues that differ for Grid and traditional
internet file sharing applications. Grid environments tend to have stricter re-
quirements for authentication and authorization. We proposed a model that
allows looser security at the resource discovery level of the architecture, with
stricter security enforced for access to resources themselves. The widespread
applicability of this model to Grid applications and services still needs to be
evaluated.

Finally, practical issues remain for applying P2P techniques to existing
Grid services. To support a highly-scalable P2P network of resource discovery
services, each of these services must be easy to configure and deploy. Substantial
improvements are needed in existing resource discovery services to support this
more dynamic service deployment scenario.
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Abstract The dynamic nature of grid computing environment requires some predictions
regarding resource reliability and application performance. In such environments,
avoiding resource failures is as important as the overall application performance.
The aim of this work is to identify the most available, least-loaded and fastest
resources for running an application. We describe a strategy for mapping the
application jobs on the grid resources using GRID superscalar [8] and GAT [1].

Keywords: reliability, high performance computing, superscalar, application toolkit



78 MAKING GRIDS WORK

1. Introduction

The number of applications that use grid computing systems are relatively
limited. One of the blocking reasons is difficulty of their development. This
is due to the intrinsic complexity of the programming interface in one hand
and heterogeneity and dynamicity of grid environments on the other hand. The
aim of this paper is to cope with complexity of grid applications development.
In this context, we address two main issues: (i) the choice of computation
resources for the application to obtain a robust and efficient execution, and (ii)
the co-existence of distinct underlying middleware on the grid.

The first part of this work presents an approach to select compute resources
by combining performance criteria (like computation and data transfer capacity)
with predicted resource reliability. A grid environment offers a large numbers
of similar or equivalent resources that grid users can select and use for their
workflow applications. These resources may provide the same functionality,
but offer different QoS properties. A workflow QoS constraint includes five
dimensions: time, cost, quality, reliability and security [11]. The basic perfor-
mance measurement is time (the first dimension), representing the total time
required for completing the execution of a workflow. The second dimension
represents the cost of workflows execution1. Quality refers to the measurement
related to the quality of the output of workflow execution. Reliability is related
to the probability of failures for execution of workflows. Finally, security refers
to confidentiality of the execution of workflow jobs and the trustworthiness of
resources (in [2] some studies in this field are represented).

This work is not only focused on the reliability dimension, in order to mini-
mize failures, but also considers the time dimension. Mapping the applications
jobs onto the most appropriate resources is a multi-criterial process and not
always the performance is an issue but also reliability. Resources manually
chosen by grid users may be the most powerful ones, but are not always the most
reliable ones. The problem is how to map the jobs onto suitable resources, in or-
der to minimize the probability of failure for execution of workflows. Workflow
execution failures can occur for the following reasons: variation in the execution
environment configuration, non-availability of required services or software
components, overloaded resource conditions, system running out of memory,
and errors in computational and network fabric components. Therefore, the
natural way to maximize the reliability will be examining theses parameters
which are relatively the potential reason of faults and avoiding them.

The second part of this paper shows how to provide a Grid programming
environment that is both high-level and platform-independent. In general, grid

1It includes the cost related to the managing of workflow systems and usage charge of Grid resources for
processing workflow jobs.
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applications are restricted to one specific grid middleware package. Therefore,
submitting unmodified existing application codes to remote grid resources may
be faltering, since the desired middleware may not available in that remote
resource. This runs contrary to the vary nature of grids, which imply a hetero-
geneous environment in which applications must run. In order to be effective,
a grid application must be able to run in any environment in which it finds
itself. Ideally grid applications would discover required grid services at run
time, and use them as needed, independent of the particular interfaces used by
the application programmer. To reach this goal, using a middleware which as-
sume the platform-independent feature can solve this complexity of application
development.

The remainder of this article is organized as follows: Section 2 describes
how to select reliable and efficient resources. Section 3 first describes GRID
superscalar, then reviews the implementation and integration of the proposed
reliability strategy in GRID superscalar and at the end shows how to make
GRID superscalar a platform independent runtime system. In section 4 some
early experiments are presented. Finally section 5 concludes the paper.

2. Resource selection

Due to the variability in grid-computing environments, it is difficult to assume
resources reliability: both load and availability of heterogeneous grid resources
varies dynamically. As applications can have a wide variety of characteristics
and requirements, there is no single best solution for mapping workflows onto
known reliable resources for all workflow applications. This section describes a
strategy to find the most reliable resources while also minimizing the overall
application completion time, i.e. by maximizing jobs performance and/or
minimizing communications time, in respect to the application characteristics.

Our approach for solving this problem starts with retrieving the information
from available resources. This information may be requested before workflow
execution starts, in order to help users take the right decision while choosing
the appropriate resources. The proposed strategy, composed of two steps, is
based on the ranking of the resources: in the first step, called trust-driven step,
parameters related to the potential source of faults are collected. The resources
are then ranked with respect to their ability to guarantee the maximum level
of reliability. Ranking allows increasing the overall reliability of application
execution. In the second step, called performance-driven step, the ranking of
each resource is revisited by taking the performance criteria (computation power
and data transfer capacity) into account. This compromise between reliability
and performance leads to increase computation robustness and to decrease
overall execution time. These two steps, which are done before execution, are
described more in detail in the following part.
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2.1 Trust-driven step

In the trust-driven step, some information and hardware requirements for the
resources are retrieved, such as the availability of the resources, its trustfulness
and the available amount of memory. Part of this information is stored in a
database, in order to have a historical trace of resources state. This database can
be located anywhere in the grid. The collected information is used for helping
the users to find an appropriate resource where their jobs will most likely not
fail. All this information may be gathered and stored either independently
and/or before running the application. Obviously, the database could become
more affluent if more information is retrieved about the hardware requirements.

During the trust-driven step, the availability of resources is computed first.
It shows resource accessibility across an IP network. Let ri denotes the ith

grid resource, naj
i the number of times when the resource ri was not available

at the moment j and taj
i the total number of attempts to verify the resource

availability. The availability of resources is defined as:

availability(ri) = 1 − naj+1
i /taj+1

i (1)

naj+1
i = naj

i + dbnai and taj+1
i = taj

i + dbtai (2)

Where dbnai and dbtai (in equation 2) is the information stored previously
on the database. After the availability calculation, the database is updated;
the new value of naj+1

i and taj+1
i will be stored (dbnai = naj+1

i and dbtai =
taj+1

i ).
Afterwards, information concerning the resource trustfulness is collected.

Trustfulness is evaluated by parameters which may generate some faults during
the execution. In particular, we take into account resources dropping (i.e. job
crashing during the execution due to the sudden unavailability of resource),
execution environment variations, job manager failures (i.e. system cancel the
job) and network failure (i.e. packets loss between resources). In this part of
trust-driven step, a value (called distrust value) is assigned to each resource.
The distrust value increases when the assigned resource does not meet the
computation requirement and the job fails (due to the one of the mentioned
parameters). For example, when a job has crashed during the execution, the
distrust value of that resource will be increased. We consider that all the
resources are trustable from the start (their background is blank). However in
the course of the time the background of each resource will be evaluated and
will confirm if its trustfulness is always maintained or not. Consequently, the
resources with the lower distrust value are better matched for the components
(workflow jobs) of the application. The trustfulness of resources is defined as
below in equation 3.
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distrust(ri) = trvj+1
i = trvj

i + dbtrvi (3)

Where trvj+1
i represents the distrust value of ith resource at the j + 1

moment and dbtrvi is the distrust value of the resource ri stored previously on
the database.

At this point, resources are sorted with respect to the level of reliability they
offer (using availability and trustfulness metrics). After all, the sorted resources
will be qualified, by taking into consideration the amount of memory, which
the application requires for the execution. The necessary amount of physical
memory is computed using estimation on the number and the size of input,
output and temporary files. Hence in order to avoid restarting the application,
we first authenticated the most available and trustfulness resources, then we
identified the resources with the available amount of physical memory. Once
the reliability of resources is assumed known, a rank value is evaluated to each
eligible resource: rrank (ri). The resources with the smallest rrank value are the
least reliable ones.

if (rrank(ri) < rrank(rj)) → ri is less reliable than rj

2.2 Performance-driven step

In the second step (performance-driven step), the challenge consists in se-
lecting the eligible resources among the reliable ones, in order to obtain a high
level of efficiency for the application. Therefore we need to choose the fastest
and least-loaded resources where the data movement cost between resources2 is
the least.

Let R = r1, r2, . . . , rn denotes the set of qualified grid resources and T =
t1, t2, . . . , tm designates the set of jobs running in the grid resources. The
performance of jth job (tj) running in these eligible resources may be estimated
by the following equation (equation number 4). It takes into consideration three
crucial parameters having an impact on performance.

Time(tj) = µ × ET (tj , ri) + γ × FTT (tj , ri) + δ(tj , ri) (4)

The first parameter, ET (tj , ri), presents the time required for completing
the jth job on the resource ri. This time take into consideration the processor
speed and memory access pattern.

The second parameter, FTT (tj , ri), presents the spent time for transferring
required data for running the jth job in the resource ri. The effectiveness of this

2The data movement cost between master and the remote hosts contributes plainly to the overall execution
time.
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parameter may be evaluated in two ways: either by using the time to transfer
the required data for the job tj ; or by the considering the time of a round trip
(source to target ri) of packets on the network. In the first case this amount may
calculate in the following way : FTT (tj , ri) = L(rj) + vol(tj)/B(rj) where
vol(tj) presents the amount of the required data for tj . L(rj) and B(rj) present
respectively the latency and bandwidth of network estimated via NWS [16] or
netperf3. In the second case this amount may estimate by using ping program
which transfers some data in bytes.

Finally, the last parameter δ (ri) describes queue waiting time which can
increase the overall execution time of an application4, which prompts a more
detailed study. In order to retrieve the information regarding the application
waiting time in a queue, we use the approach proposed in Delphoi [7] which
implements an appropriate strategy to predict this waiting time. The application
waiting time may in general depend on both the application size (i.e., the number
of hosts required to run it) and the queue load. For this reason, the proposed
strategy forecasts three categories (fully used and normally used and empty
queue), where each of them uses three classes of application sizes, small (1
to 4 hosts), medium (5 to 16 hosts), and large (17 or more hosts). By taking
application size and queue load into account, an average waiting time can be
predicted before running the application, allowing to determine the least loaded
queue at the runtime. This parameter helps the user to claim a resource with
small estimated response times.

In the equation number 4, both γ and µ weighted parameters are specified
to give more importance to data transfer time or to the job execution time,
depending on the respective application requirement.

Hence, in order to find the resources ensuring the least data transfer time , in
this step, information such as processor speed, network related characteristic
(the ping program outputs, network latency and bandwidth) and charge of
resources is retrieved.

Once the execution time is estimated, another rank value is assigned to each
resource called prank (ri) which expresses the power of each resource. In this
case the resource ri is more powerful when its prank value is bigger, i.e. when
its estimated execution time for the job is smaller.

if (prank(ri) < prank(rj)) → ri is less powerful than rj

The major issue now is to find the most powerful resource among the most
reliable ones, as the most reliable resources are not necessarily the most pow-
erful ones. The proposed policy is designed to find a compromise between
these two metrics. For this purpose, we give another rank value to the resources

3http://www.netperf.org/netperf/NetperfPage.html
4In the case of a cluster of workstations, δ (ri) is replaced by the resource load.
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called grank (ri). This value is a weighted linear combination of rrank (ri) and
prank (ri) computed as follows, where α and β are the weights, which can be
customized by the users (reflecting the application requirements) to give more
importance to one over the other:

grank(ri) = α.rrank(ri) + β.prank(ri) (5)

As a result, the resource with the highest grank will be relatively the most
powerful and the most reliable resource, in respect to the user and application
requirements. Hence, the performance-derived step allows identifying the
reliable resources, which will be able to finish the job in the least time.

3. GRID superscalar: a middleware independent system
allowing resource prediction

The previously described strategy, which tries to find the reliable and pow-
erful resources, is integrated in the GRID superscalar system. This section
first describes briefly GRID superscalar, then explains the implementation of
reliability strategy in this system using Grid Application Toolkit (GAT) [1] and
argues the choice of this toolkit. The integration of this solution in GRID super-
scalar will help users to take the right decision while choosing the appropriate
resources before application execution starts.

3.1 GRID superscalar

The GRID superscalar [8], which could be considered as a workflow system,
is a framework mainly composed of a programming interface, a deployment
center and a run-time system. It runs actually on top of Globus [12] Toolkit,
Ninf-G [13] and ssh/scp. GRID superscalar programming environment requires
the following functions in the main program: GS-On() and GS-Off() functions
are provided for initialization and finalization of the run-time. GS-Open(),
GS-Close(), GS-FOpen() and GS-FClose() for handling files. GS-Barrier()
function has been defined to allow the programmers to wait till all grid jobs
finish. The user specifies the functions (jobs), which are desired to be executed
in a remote server in the grid, via an IDL file. For each of these functions,
the type and nature (input, output or input/output) of the parameters must be
specified. The deployment center is a Java-based Graphical User Interface,
which implements the grid resource management and application configuration.
It handles early failure detection, transfers the source code to the remote ma-
chines, and generates some additional source code files required for the master
and the worker parts (using the gsstubgen tool). It compiles the main program
on the localhost, and the worker programs on the remote hosts, and finally
generates the configuration files needed at run-time. The run-time library is
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able to detect job dependencies, builds a job graph, which enables to discover
the inherent parallelism of the sequential application, and performs concurrent
job submission. Techniques such as file renaming, file locality, disk sharing,
checkpointing constraints specification are applied to increase the application
performance.

3.2 Resource selection on GRID superscalar

As presented in section 2, the information such as the availability and the
trustfulness of resources, the resource load and the amount of physical memory,
the consistency of retrieved information, etc. is required for the proposed
schema.

Some of this information like the amount of physical memory or the resource
load is retrieved via the Mercury Monitoring System5[15]. Another part of this
information like the network latency and bandwidth may be estimated by some
tools like NWS or netperf.

A large part of resource trustfulness is computed within GRID superscalar.
GRID superscalar detects if any of the worker jobs fails due to an internal error,
or because it has been killed for any reason. It is important to mention that the
application and the user related failures( such as forgetting to run grid-proxy-
init) are not considered in the trustfulness parameter. Besides, the resource
trustfulness concerning the network failure may detect via ping program to
verify the packets loss between resources.

All the information regarding the remote resources can be computed using
any remote job submission system6. Once the information is computed, the
local host collects them. Thereafter, part of this information is stored in a
database7, which allows to generate the historic trace of previously computed
information. When all the information is retrieved, then the resources are sorted
using the equation number 5.

Both the necessary information retrieval and the reliability strategy imple-
mentation are integrated in deployment center of GRID superscalar. This later
permits to realize the proposed prediction scheme for reliable resources se-
lection, by using application performance information (computation and data
transfer capacity).

5The Mercury Monitoring System is a general-purpose grid monitoring system developed by the GridLab
project. It supports the monitoring of machines, grid services and running applications. Mercury features a
flexible, modular design that makes it easy to adapt Mercury for various monitoring requirements.
6Like job submission system in GAT, Globus or Unicore Toolkits
7For this purpose, the "Advert Management" service in Grid Application Toolkit offers us the possibility of
storing and retrieving information, which is kept persistent throughout multiple and independent executions
if GRID superscalar: this service allows each resource to maintain its own advertisements.
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3.3 Middleware independent grid programming
environment

In order to have our mechanism running in a larger number of grid environ-
ments, we use Grid Application Toolkit for the implementation of our prediction
strategy. GAT provides a glue layer which maps the API function calls executed
by an application to the corresponding grid middleware functionality. GAT was
developed by the EC-funded GridLab project. It provides a simple and stable
API to various grid environments (like Globus, Unicore [20] , ssh, GridLab
services [21]).

Moreover, in order to have a both high-level and platform-independent grid
programming environment which allows resource prediction, we implement
GRID superscalar (runs actually on top of Globus Toolkit) on top of GAT.

GRID superscalar realization requires mainly the following GAT functionali-
ties: file management, remote job submission and job state notification. File
management deals with the access management of files on remote grid storage
resources (like copying, moving and deleting file instances). Remote job sub-
mission permits starting and controlling jobs running on remote grid resources.
Finally job state notification examines the state (initial, scheduled, running
and stopped) of remote jobs. Implementing both the prediction mechanism
and GRID superscalar’s runtime system using GAT, allows sustaining a both
high-level and platform-independent grid programming environment.

4. Experimentation

The objective of this section is to show some results of our implementation.
We first present the utilized platform, and then the result of several experiments.
The presented experimentations are done on the DAS2 testbed. DAS-2 is a wide-
area distributed computer situated at five Dutch Universities in the Netherlands.
It consists of 200 Dual Pentium-III nodes with 1 GB Random Access Memory.
The Vrije Universiteit’s cluster, containing 72 nodes, is the largest cluster, the
other clusters consist of 32 nodes.

The following tables show the retrieved information for 4 cluster of DAS2.
The first column in both tables contains the cluster names. The second column
contains the availability of resources and the third one the trustfulness of them.
The fourth and fifth columns show the total amount of physical and swap
memory (in KB) in the system. Please note that a part of the capacity presented
for physical memory is used by the operating system, the application, etc.
Finally the last column shows the file transfer time (in sec) between the master
and the respective workers. In table 2, the second column presents the job size
running on the workers, and the third column shows the queueing waiting time
(in sec). For the sake of clarity we illustrate just the waiting time for the small
jobs.
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Table 1. Retrieval information regarding the reliability and performance of three workers.

worker availability distrust memory swap file transfer time

fs1.das2.liacs.nl 1.00 0.0 1540592 2096472 11.0
fs0.das2.cs.vu.nl 0.88 5.0 1540592 2096472 11.2
fs3.das2.ewi.tudelft.nl 0.61 6.0 1026584 2096472 11.1
fs2.das2.nikhef.nl 0.79 7.0 1540592 2096472 11.3

Table 2. Queuing waiting time for three workers.

worker job size queue wait time

fs1.das2.liacs.nl small 12 sec
fs0.das2.cs.vu.nl small 10 sec
fs3.das2.ewi.tudelft.nl small 80 sec
fs2.das2.nikhef.nl small 135 sec

The information presented in table 1 indicates that for those jobs which need
less than 32 processors, fs1.das2.liacs.nl worker is the most appropriate and
reliable resource. In the case where the jobs need more than 32 processors,
obligatory fs0.das2.cs.vu.nl worker (the only cluster with 72 processors) will be
chosen. Regarding the application requirements user can give more importance
to the reliability or the execution time. In this case, by taking into account
the information presented in table two, worker fs1.das2.liacs.nl may be chosen
if the reliability parameter is more important. In the opposite case, when the
execution time is more important fs0.das2.cs.vu.nl worker may be chosen. To
realize the experimentations, we use three different kinds of applications: matrix
multiplication, cholesky factorization of matrices and fastdnaml computation to
estimate the phylogenetic trees of sequences.

In order to evaluate the effectiveness of proposed reliability strategy we use
fastdnaml application which uses a large sequence as input (its execution takes
quiet long time). In the first case the most reliable resources in DAS2 are chosen.
Therefore we use fs0.das2.cs.vu.nl cluster situated in Amsterdam as master
and fs1.das2.liacs.nl cluster located in Liden as worker (we use 4 processors of
this cluster). The execution of this application is completed successfully and
takes 5149,55 sec. In the second case instead of fs1.das2.liacs.nl we choose
fs2.das2.nikhef.nl situated in Amsterdam university as worker (we use also 4
processors of this cluster). This cluster is less reliable and our application is
failed after 4038,01 sec, due to sudden unavailability of this cluster. This means
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that we lost 78,41% of the time for completing this execution, by choosing a
less reliable resource.

Table 3. GRID superscalar on top of Globus and GAT.

application master worker using GAT using Globus

matrix multiplication fs0.das2.cs.vu.nl fs1.das2.liacs.nl 252,12 sec 174,25 sec
cholesky factorization fs0.das2.cs.vu.nl fs1.das2.liacs.nl 575,30 sec 348,02 sec
fastdnaml fs0.das2.cs.vu.nl fs1.das2.liacs.nl 5149,55 sec 3947,25 sec

We developed a version of GRID superscalar based on GAT. In order to
evaluate the performance of GRID superscalar on top of GAT and on top of
Globus, we used the three types of application that we presented. The results are
presented in table 3. We notice that GAT reduces the applications performance.
The performance decreases around 30% in the case of matrix multiplication,
40% in the case of Cholesky factorization and 28% in the case of fastdnaml.
This is due to the non functionality of pre staging and post staging of files in
the used GRAM adaptors in one hand and the lack of clustering file copying in
gridftp adaptors on the other hand.

Further work should perform similar experiments in a heterogeneous envi-
ronment, where the selection of reliable and efficient resources is more critical.

5. Conclusion

Distributed environments, and in particular grids, are inherently unreliable.
Frequent failures of their components and applications make development
difficult, especially to the scientists who are not necessarily grid experts. This
paper first presents a mechanism, which allows to run the application jobs on
the most reliable and most powerful resources, in respect to the application
requirements. Our described system gathers all the necessary characteristics
about resources. Thanks to the collected information, our system finds and
chooses the most suitable and adequate resource for each of the jobs. This
paper also shows how to obtain a high-level and platform-independent, grid
programming environment. It proposes to combine GRID superscalar runtime
system with GAT, taking advantage of their respective properties. In this way
GRID superscalar may run across various Grid middleware systems such as
various versions of Globus, Unicore or ssh/scp.
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1. Introduction

To achieve their envisioned global-scale deployment, Grid systems need to
be scalable. Peer-to-peer (P2P) techniques are widely viewed as one of the
prominent ways to reach the desired scalability. Resource discovery is one of
the most important functionalities of a Grid system and, at the same time, one of
the most difficult to scale. Indeed, the duty of a resource discovery system (such
as the Globus MDS [1]) is to provide system-wide up-to-date information, a task
which has inherently limited scalability. To add to the challenge, Grid resource
discovery systems need to manage not only static resources, but also resources
whose characteristics change dynamically over time, making the design critical.

Recent work [2] proposed a framework that combines the use of Distributed
Hash Tables (DHTs) to search static Grid resources, and an unstructured P2P
search algorithm to locate dynamic resources. Differently from standard un-
structured protocols, such framework searches for dynamic resources by using
a “dynamic querying” algorithm, which exploits a DHT structure to distribute
queries across nodes without generating redundant messages.

In this paper we elaborate on such an approach by designing and imple-
menting a hybrid P2P-based Grid resource discovery system that supports both
static and dynamic information retrieval, and push and pull models. Like recent
unstructured systems, our system is based on a two-tier approach, with peers
divided in two categories (Superpeers and Peers) based on the level of service
they can provide. Following this approach, each Superpeer acts as a server for a
number of regular Peers, while Superpeers connect to each other in a P2P fash-
ion at a higher level [3]. Unlike unstructured systems, we organize Superpeers
using a DHT-based system, namely Chord [4] and its implementation Open
Chord [5].

The search for static information is performed in a structured-like fashion,
while dynamic information search is performed in an efficient unstructured-like
fashion tailored to the DHT structure. Thus, the proposed system is hybrid in
more than one aspect. The two-tier approach couples the completely decen-
tralized P2P paradigm with a limited degree of centrality to reduce the effort
of providing a global view of the system resources. In addition, our system
couples the structured topology with a brodcast-like mechanism reminiscent
of unstructured systems to locate dynamic information. The support for both a
push and a pull approach to resource discovery allows for a trade-off between
message cost for resource discovery and staleness of provided information.

The system has been fully implemented and deployed on the Grid’5000
platform [6] for testing and evaluation. The experimental performance results
presented in this paper demonstrate the efficiency of the implemented system,
both in terms of number of messages and time needed to complete the search.
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The remainder of the paper is organized as follows. Section 2 discusses
related work on P2P-based resource discovery. Section 3 presents the system
design, and describes the algorithm of dynamic querying implemented by the
system. Section 4 discusses the implementation of the system and its evaluation
on the Grid’5000 platform. Finally, Section 5 conclude the paper.

2. Related work

P2P-based resource discovery systems allow nodes participating in the system
to share both the storage load and the query load. In addition, they provide a
robust communication overlay. P2P-based Grid resource discovery mechanisms
that appear in the literature can be divided into two categories: structured and
unstructured [7]. Most proposed systems depend on a structured P2P underlying
layer. A structured system however assumes that all pieces of information are
stored in an orderly fashion according to their values in a DHT. This is the
reason structured systems support efficient resource discovery. However, apart
from static resources, Grids include dynamic resources whose values change
over time. Whenever the value of a resource attribute stored in a structured
system changes, it needs to be republished. If this occurs too often, the cost of
republishing becomes prohibitively high.

Flooding is supported by those P2P-based Grid resource discovery systems
that follow the unstructured approach. Flooding, however, can generate a
large volume of traffic if not carefully deployed, due to the duplicate messages
generated during this process. Several P2P-based Grid resource discovery
algorithms appear in the literature, trying to alleviate the excessive volume
of traffic produced during flooding [8]. One of the first alternatives proposed
was random walks. Each node forwards each query it receives to a single
neighboring node chosen at random, a method that generates very little traffic
but suffers from reduced network coverage and long response time. As an
alternative, multiple random walks have been proposed, where the querying
node starts simultaneously k parallel random walkers. Although compared to
a single random walk this method has better behavior, it still suffers from low
network coverage and long response time compared to flooding.

Hybrid methods that combine flooding with random walks have been pro-
posed in [9]. Schemes like Directed Breadth First Search (DBFS) forward
queries only to those peers that have provided results to past requests, under
the assumption that they will continue to do so. Interest-based schemes aim
to cluster together peers with similar content, under the assumption that those
peers are better suited to serve each other needs. In another family of algorithms,
query messages are forwarded selectively to part of a node neighbors based on
predefined criteria or statistical information. For example, each node selects the
first k highest capacity nodes or the k connections with the smallest latency to
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forward new queries [10]. A somewhat different approach named forwarding
indices builds a structure that resembles a routing table at each node [11]. This
structure stores the number of responses returned through each neighbor on
each one of a preselected list of topics. Other techniques include query caching,
or the incorporation of semantic information in the network [12–13].

An approach that has been used to make resource location in unstructured
P2P systems more efficient is the partitioning of the overlay network into
subnetworks using content characterization methods. A different subnetwork is
formed per content category. Each subnetwork connects all peers that possess
files belonging to the corresponding category. A system that exploits this
approach is the Semantic Overlay Networks (SONs) [12]. SONs use a semantic
categorization of music files based on the music genre they belong to. The
main drawback of this method is the semantic categorization of the content.
An approach that overcomes this semantic categorization method has been
proposed in [13].

A controlled flooding mechanism, known as “dynamic querying,” has been
proposed to reduce the number of messages generated by unstructured P2P
systems [14]. In this paper a dynamic querying-like approach is implemented
and evaluated. The method exploits the benefits of dynamic querying over the
overlay network of a DHT-based P2P system to eliminate duplicate messages,
thus reducing significantly the total number of messages generated by every
search. The dynamic querying algorithm implemented in our framework is
described in the next section.

3. System design

The proposed system is based on a two-tier architecture in which nodes
belong either to the category of Peers or Superpeers, based on the level of
service they can offer. Most participants act as normal Peers, while the high-
bandwidth participants act as Superpeers. Superpeers participate normally
in the P2P overlay and also act on behalf of Peers, which participate in the
system indirectly by connecting to Superpeers. There are several reasons for
this “stretching” of the P2P system definition, which dictates that all participants
have equal roles and responsibilities. The first one is to improve the scalability
of the system by exploiting the heterogeneity of participating nodes. This
essentially means that more work can be assigned to those participants that
can handle it, while at the same time removing most of the workload from
the less capable peers. In addition, Peers can provide their corresponding
Superpeer with static information about the resources they manage. Thus, when
a Superpeer receives a query, it can forward the query only to those Peers whose
resources match the static criteria. The Peers will then reply with any local
resource information that also matches the dynamic part of the query.
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Superpeer

Peer

Client

Figure 1. The architecture of the proposed system. Dashed lines indicate the fingers nodes in
the Chord overlay.

While such two-tier approach is widely implemented by unstructured P2P
systems, in our framework we organize Superpeers using Chord [4], a well
known DHT-based system. There are two main reasons for this. The first one
is that the Chord structure can be used to quickly resolve queries based on
static information. The second reason is that the structure of Chord allows to
distribute a query to all nodes in the overlay avoiding redundant (i.e., duplicate)
messages. In particular, we implemented an algorithm for “dynamic querying”
over a DHT, described in Section 3.1. Such algorithm allows to distribute the
query to as many nodes as it is required to locate the desired information, instead
of flooding the entire network for every query. This means that the cost of the
lookup is further reduced, depending on the amount of matching resources that
exist in the system and the number of the results required by the user.

The architecture of the system is schematically represented in Figure 1. Four
types of components are defined:

Superpeers: The main components of the system. They are organized in
a Chord network and implement the dynamic querying algorithm. Each
one is responsible for a number of Peers.

Peers: Provide information about the resources they manage. The in-
formation is provided to the corresponding Superpeer following either a
push or pull model (see below).

Clients: Connect to a Superpeer and issue queries on behalf of a user,
also managing the delivery of query responses to the user.
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Cache Servers: The entry-points for Peers and Superpeers to the network
(not shown in the figure). They hold a list of the most recently joined
Superpeers and return a subset of that list to any requestor.

As mentioned above, our system provides support for both push and pull
models for the dissemination of resource information (especially regarding
the dynamic information). This approach is similar to the one used in the
Monitoring and Discovery System (MDS) of Globus Toolkit 2, where the
various GRIS modules register themselves (and their static information) to
a GIIS module [1]. Each GRIS has the autonomy to decide whether it will
periodically push the dynamic information to its corresponding GIIS (push

model), or it will wait for the GIIS to query each of its registered GRISs for
that information, when needed (pull model). In our system, each Peer can be
configured to send to its Superpeer its static information only, or to periodically
send up-to-date copies of its dynamic information.

Notice that, while Figure 1 shows only one Superpeer overlay, the system can
be extended to include multiple overlays, one for each type of static resource
information, as proposed in [15]. This will greatly reduce the number of
Superpeers contacted during a dynamic query lookup.

In the remainder of this section we briefly describe the algorithm of dynamic
querying over a DHT as it has been implemented in our system.

3.1 Querying dynamic resources

Dynamic querying [14] is a technique used in unstructured P2P networks to
reduce the traffic generated by the search process. The query initiator starts the
search by sending the query to a few of its neighbors and with a small Time-
to-Live (TTL). The main goal of this first phase is to estimate the popularity
of the resource to be located. If such an attempt does not produce a sufficient
number of results, the search initiator sends the query towards the next neighbor
with a new TTL. Such TTL is calculated taking into account both the desired
number of results, and the resource popularity estimated during the previous
phase. This process is repeated until the expected number of results is received,
or until all the neighbors have been queried.

The algorithm of dynamic querying over a DHT, as outlined in [2], uses a
combination of the dynamic querying approach with an algorithm for efficient
broadcast over DHTs proposed in [16], which allows to perform a broadcast
operation with minimal cost in a Chord-based P2P network. In a network of N
nodes, a broadcast message originating at an arbitrary node reaches all other
nodes after exactly N − 1 messages, with logN steps. In order to explain how
dynamic querying over a DHT works, we first recall the algorithm of broadcast
over DHTs.
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Figure 2. An example of broadcast over a Chord DHT.

Broadcast over a DHT. Let us consider a fully populated Chord ring with
N = 2m nodes and an m-bit identifier space. Each Chord node x has a finger
table, with fingers pointing to nodes x + 2i−1, where i = 1...m. Each of these
m nodes, in turn, has its fingers pointing to other m nodes in the same way.
The broadcast initiator node sends the query to all nodes in its finger table, and
in turn, these nodes do the same with nodes in their finger tables. In this way,
all nodes are reached in m steps. Since the same node may be pointed to by
multiple fingers, the following strategy is used to avoid redundant messages.
Each message sent by a node contains a “limit” argument, which is used to
restrict the forwarding space of the receiving node. The “limit” argument of a
message sent to the node pointed to by finger i is finger i + 1. Figure 2 gives
an example of such Chord ring with m = 3 (eight nodes, three-bit identifier
space and finger tables with three entries). In this example, Node 1 initiates
the broadcast of a data item D. The “limit” is sent together with the data item.
Three steps of communication between nodes are shown with solid, dashed, and
dashed-dotted lines. Node 1 reaches all other nodes via N − 1 = 7 messages
within m = 3 steps. The same procedure applies to Chord rings with N < 2m

(i.e., not fully populated rings). In this case, the number of distinct fingers of
each node is likely to be logN , on the average.

Dynamic querying over a DHT. In brief, the algorithm of dynamic querying
over a DHT works as follows. The initiator node (that is, the Superpeer that
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submits the query to the network on behalf of a Client) starts by processing the
query locally, and by forwarding the query to its first n unique fingers. These
fingers will in turn forward the query to all nodes in the portions of the network
they are responsible for, following the broadcast algorithm described above.
When a Superpeer node receives a query, it checks for local resources matching
the query criteria and, in case of match, it sends a query hit directly to the
initiator node, which will in turn forward it to the Client. After sending the
query to its first n unique fingers, the algorithm proceeds iteratively as follows.

First, the initiator waits for a given amount of time, which is the estimated
time needed by the query to reach the farthest node under the nth unique finger,
plus the time needed to receive a query hit from that node. Then, if the number
of received query hits is equal or greater than the number of query hits desired
by the Client, the initiator node terminates. Otherwise, it continues the search
by sending the query to other k unique fingers after the first n ones. The value of
k is chosen by calculating the number of nodes that must be contacted to obtain
the desired number of query hits on the basis of the estimated popularity of the
resource, which is in turn calculated as the ratio between the current number of
received query hits and the estimated number of nodes reached through the first
n unique fingers (which is likely to be 2n [4]).

The iterative procedure above is repeated until the desired number of query
hits is obtained, or there are no more fingers to contact. Note that, if the resource
popularity is properly estimated on the first iteration, two iterations - including
the first one - are sufficient to obtain the desired number of query hits.

4. Implementation and evaluation

We implemented the system using Java. Basically, each one of the system
components (Superpeer, Peer, Client, and Cache Server) has been implemented
as a separate Java application that can be installed independently from the
other components. TCP sockets have been used to let the system components
communicate with each other.

For building the Superpeer overlay we used Open Chord, an implementation
of the Chord algorithm by the University of Bamberg [5]. Open Chord provides
an API that enables the use of a Chord DHT within Java applications. How-
ever, that API provided only methods for joining/leaving a Chord network and
inserting/removing keys from it. In order to perform dynamic querying over
the overlay, we extended the Open Chord API by adding the functionality to
send arbitrary messages between nodes in the system. Such send operation is
asynchronous, since the controlled broadcast performed by dynamic querying is
executed in a Breadth-First-Search rather than a Depth-First-Search fashion. In
addition, we added a functionality that allows a developer to access the (sorted)
finger table of Chord, as needed by the dynamic querying algorithm.
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In the implementation of the dynamic querying algorithm, the number of
unique fingers contacted during the first iteration is set to 6. As the number of
nodes reachable through n distinct fingers is likely to be 2n (see Section 3.1),
the number of Superpeers contacted during the first iteration is 26 = 64 on the
average.

While queries are distributed using the Chord overlay, results are sent directly
to the query initiator. That is, if a Peer contains resources that match the query
criteria, it issues a query hit message directly to the Superpeer that initiated the
dynamic querying (i.e., the Superpeer to which the Client that issued the query
is connected). That Superpeer will in turn forward the query hits over its open
socket with the Client, as they arrive.

4.1 Experimental results

In this section we discuss the performance of the proposed resource discovery
system in a real Grid scenario. We focused on the efficiency of the system in
terms of number of messages and time needed to complete a search. For our
experiments we used the Grid’5000 testbed, a highly reconfigurable, control-
lable and easy to monitor Grid platform gathering nine sites geographically
distributed in France and featuring a total of 5000 CPUs [6]. Grid’5000 is an
ideal testbed for our experiments, since not only it allowed us to test the system
in a real Grid platform, but it also contains sites from all of France, which more
closely matches the environment of a global-scale Grid.

We used several hosts from four Grid’5000 sites (Rennes, Sophia, Nancy,
and Orsay) for a total of 410 nodes across six clusters of those sites. Each host
was used to execute a number of independent Peer and Superpeer applications.
In order to distribute the load across sites, Peers and Superpeers have been
uniformly distributed across nodes. Thus, given the number of available nodes,
N , and chosen the overall number of Superpeers, S, and the average number of
Peers connected to each Superpeer, P , we executed an average number of S/N
Superpeers and P × (S/N) Peers on each node.

Each Peer and Superpeer entered the system at random times. It was, thus,
quite unlikely for a Superpeer to have in its finger table Superpeers running on
the same host, or for a Peer to connect to a Superpeer in the same machine. We
then initiated several Clients, each of which submitted the same batch of queries,
each one having search criteria with a different probability to match resources
in the network. Given a query, we define the probability of match, p, as the ratio
between the total number of resources that match the query criteria, and the
total number of Peers in the network. When submitting the query, each Client
specifies the desired number of query hits R, i.e., the number of resources to be
located that match the query criteria.

We measured two performance parameters:
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Figure 3. Number of Superpeers contacted to perform queries with different probabilities
of match and different numbers of required results (R), in two network scenarios: (a) S=5000,
P=10; (b) S=5000, P=50.

The number of Superpeers contacted by each query.

The time required by each query hit to reach the Client.

Notice that the first parameter corresponds to the number of messages gen-
erated by the algorithm of dynamic querying over the DHT. For the second
parameter, a significant value is the time required by the Rth query hit to reach
the Client (where R is the desired number of results), since it represents the
amount of time needed to reach the goal of the search.

The experiments have been performed in two network scenarios: 1) S =
5000 and P = 10; 2) S = 5000 and P = 50. For each network scenario we
submitted queries with four different probabilities of match (p = 0.001, 0.01,
0.1, and 1.0) and four numbers of required query hits (R = 1, 10, 100, and
1000), and for all these queries we measured both the number of Superpeers
contacted and the time required by each query hit to reach the Client.

Figure 3 shows the number of Superpeers contacted during the various
experiments. The search of one resource (R = 1) in both scenarios (Figure 3a
and Figure 3b) generates an average of 68.4 messages, which is close to the
average number of Superpeers reachable through the first 6 fingers. In most
experiments, in fact, at least one Peer responded with a query hit during the first
iteration of the search.

For higher values of R, the number of Superpeers contacted depends sig-
nificantly on the value of p. This is because for small values of p the first
iteration does not produce enough results, and so at least another iteration must
be performed. Let us consider, for example, the case of R = 10 in the network
with P = 10 (Figure 3a). When p = 0.01, an average of 147 Superpeers are



Implementation of a Hybrid P2P-based Grid Resource Discovery System 99

contacted indicating that 7 fingers have been queried on the mean (6 of which
during the first iteration). When p = 0.001, an average of 1067 Superpeers are
contacted, corresponding to 10 fingers. Similar behavior applies to the network
with P = 50 and for other values of R.

As shown in Figure 3a and Figure 3b, in some cases all 5000 Superpeers are
contacted during the search. This happens when the algorithm, on the basis of
the estimated popularity of the resource, calculates that all remaining fingers
must be contacted to obtain the desired number of results. This, obviously, will
or will not lead to success based on the actual presence of enough matching
resources in the network. In every case, the number of messages is bound to the
number of Superpeers, without redundancy.

Figure 4 shows the time needed to receive the query hits in some of the
experiments described above. For space limitations, we show only the results of
searches with R = 100 and R = 1000 for various values of p. For some values
of p, the search did not succeed to find the desired number of resources, because
they were not available. For example, with p = 0.001, it is impossible to find
1000 resources when S = 5000 and P = 10. That’s why Figure 4a reports only
results for p = 0.01, 0.1, and 1.0. The same applies to Figure 4c and Figure 4d.

For all values of R, in both network scenarios, the time needed to receive
the Rth query hit was in the order of few hundreds milliseconds. As expected,
comparing the results for a given value of P and R (for example Figure 4b)
we note that times increase as p decreases. Moreover, lines for higher values
of p are more flat, indicating that all query hits arrive in a small time interval.
This happens because for high values of p the search is completed in only one
iteration, and so there is not the additional delay of a new round of search.
When a second iteration of search is performed (as for p = 0.001 in Figure 4b),
the line shows two trends: the first part with few results arriving at different
times from the first 6 fingers, the second part, more flat, with several results
arriving in a more close time sequence.

Comparing the arrival times of query hits for the same values of R but
different values of P (for example, Figure 4a vs Figure 4b), we find that a
higher value of P leads to reduced times for any value of p. This is due to the
higher number of Peers - and thus matching resources - that are reached during
the first iteration of dynamic querying when P is higher. Such result confirms
that the two tier-approach leads to reduced search time when there is a good
proportion between the number of Superpeers and Peers in the system.

As a final remark, all the experimental results presented above demonstrate
the efficiency of the implemented system. The dynamic querying algorithm was
able to limit and control the number of messages generated by the search in
function of the probability of match and the number of desired results, while its
coupling with the two-tier architecture allowed to ensure very low search times
in all the experimental scenarios.
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Figure 4. Time to receive query hits under different probabilities of match, in four scenarios:
(a) P=10, R=100; (b) P=50, R=100; (c) P=10, R=1000; (d) P=50, R=1000. In all cases S=5000.
The values on the x-axis represent the arrival numbers of the received query hits. The values on
the y-axis are the times needed to receive the various query hits after the query submission.

5. Conclusions

We designed and implemented a Grid resource discovery system that com-
bines the flexibility of unstructured P2P systems and protocols, such as the
two-tier architecture and the dynamic querying approach, with the efficiency of
structured DHT-based systems like Chord.

The performance of the implemented system has been evaluated in a real Grid
environment using the Grid’5000 testbed. The experimental results presented in
the paper demonstrated the efficiency of the algorithm of dynamic querying over
a DHT to control the number of messages generated by the resource discovery
tasks, and its coupling with the two-tier architecture ensured very low search
delays in all experimental scenarios.
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Abstract This paper presents a set of strategies for scheduling a stream of batch jobs on
the machines of a heterogeneous computational farm. Our proposal is based on
a flexible backfilling, which schedules jobs according to a priority assigned to
each job submitted for execution. Priority values are computed as a result of
a set of heuristics whose main goal is to improve resources utilization and to
meet the job QoS requirements. The heuristics consider job deadlines, estimated
execution time and aging of the jobs in the scheduling queue. Furthermore,
the set of software licenses required by a job is also considered. The different
proposals have been compared through simulations. Performance figures show
the applicability of our approach.

Keywords: scheduling, resource management, quality of service

1. Introduction

In this paper we propose a set of strategies for scheduling a stream of batch
jobs on the machines of a heterogeneous computational farm. A computational
farm can integrate hw/sw heterogeneous resources such as workstations, parallel
systems, servers, storage arrays, and software licenses. In such an environment,
users should submit their computational requests without necessarily knowing
on which computational resources these will be executed. A fruitful exploitation
of a computational farm requires scheduling algorithms able to efficiently and
effectively allocate the user jobs on the computational resources [7].

Our proposal is based on the backfilling technique [2], which has been
initially introduced for scheduling streams of jobs on parallel supercomputers.
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Backfilling has been originally introduced to extend the First Come First

Served (FCFS) approach in order to increase the efficiency of the resource
usage. Backfilling improves resource utilization by allowing the first job J
of the queue to reserve resources that are not available and by evaluating the
possible execution of successive jobs in the submission queue. These jobs can
be executed if and only if they do not exploit the resources reserved by J or
their execution terminates within the shadow time, i.e. the time where all the
reserved resources become available. This scheduling strategy requires the
knowledge of an estimation of the execution time of any job.

In this paper we propose a set of extensions to the original backfilling in-
troduced to support heterogeneity. The basic idea of our approach is to assign
a priority to each job in the submission queue by considering both the opti-
mization of the usage of the system resources and a set of QoS requirements
of the jobs. Job priorities are computed at each scheduling event, i.e. at a job
submission and at a job ending, by using a set of heuristics.

For instance, our solution supports job deadlines by dynamically increasing
the priority of a job when its deadline is approaching, and by minimizing the
priority of a job when its deadline is exceeded. Furthermore, it also takes into
account the type of resources required by each job. We have considered, for
instance, the set of software licenses required for the execution of each job. In
a heterogeneous environment, some software licenses may require a specific
operating system or may be installed on a specific machine only. Furthermore, a
maximum number of copies of a software license, which can be simultaneously
utilized, is often defined. This value is generally smaller than the number of
machines of the computational farm. In this case the license requirements of the
jobs must be considered in the scheduling process in order to optimize the usage
of such resources. Our scheduler detects critical licenses, i.e. licenses whose
number of concurrently usable copies is smaller than the number of copies
required by the jobs in the submission queue, and assigns to each job a priority
proportional to the amount of critical licenses it requires. Since jobs requiring
a large number of critical licenses release them after their termination, they
should be executed as soon as possible in order to let the scheduler to define
more flexible scheduling plans. Other heuristics reducing job starvation and
improving job response time are defined as well.

We have developed two different extensions of the original backfilling algo-
rithm. In the first one, the maximum priority is always assigned to the first job
in the queue. Furthermore, this job may reserve all the unavailable resources it
needs and the reservation is preserved even if a higher priority job is submitted.
The other jobs in the submission queue are ordered according to their prior-
ity and are considered by the scheduler according to the standard backfilling
algorithm. As in backfilling, this strategy prevents starvation.
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According to the second extension the job J with the highest priority is able
to make resource reservation, but such reservation may be canceled if a job with
a higher priority is submitted or if the priority of a previously submitted job is
updated and exceeds that of J . In this way another job may be moved to the
first position of the queue.

We have developed an event driven ad-hoc simulator to evaluate the different
versions of the proposed schedulers.

Section ?? reviews some proposals based on backfilling. In Section 3, we
describe the target architecture considered, while Section 4 introduces the
heuristics designed to compute the job priorities. These heuristics are described
in sections 5 and 6. Section 7 shows experimental results. Finally, Section 8
describes conclusions and future works.

2. Related Work

First Come First Served (FCFS) is one of the simplest approach to job
scheduling [9]. FCFS schedules jobs according to their submission order and
checks the availability of the resources required by each job. If all the resources
required by a job J are available, J is immediately scheduled for the execution,
otherwise it is queued. Every job submitted while J is waiting for the execution
is queued, even if the resources it requires are available. Despite its simplicity,
this approach presents several advantages. FCFS does not require an estimation
of job execution times and their implementation is straightforward. Furthermore,
it guarantees that the response time of a job J , i.e. the time elapsed between
the submission time of the job and its termination time, does not depend on
the execution times of the jobs submitted later. On the other hand, this fairness
property can imply a low utilization of the system resources, because a submitted
job cannot be executed until previous submitted jobs are scheduled.

The main goal of the backfilling approach is to improve FCFS by increasing
the utilization of the system resources and by decreasing the average waiting
time of the job in the queue of the scheduler [10]. Different variants of the basic
backfilling approach have been proposed.

The Conservative Backfilling approach allows each job to reserve the re-
sources it needs, when it is inserted into the job queue [10]. A job may be
executed before those previously submitted, if its execution does not violate
the reservations made by such jobs. This strategy improves system usage by
allowing jobs requiring a few available resources for a short time to overtake
longer jobs in the queue. This way, the order of submission may be violated
only if overtaking jobs do not delay the execution of jobs submitted earlier.

In a popular variant of backfilling, the EASY (Extensible Argonne Scheduling

system) scheduler [3] [5] [1], developed for the IBM SP2 supercomputer, only
the first job in the submission queue is allowed to reserve the resources it needs.
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This approach is more “aggressive” because it increases resource utilization,
even if jobs could be delayed by others submitted later.

Most backfilling strategies consider jobs candidate both for execution and for
backfilling according to a FCFS strategy. An alternative solution is introduced in
Flexible Backfilling. Here, jobs are prioritized according to some policy. In [6]
a backfilling solution combines three kind of priorities, an administrative, a user
and a scheduler priority. The first two priority classes give to the administrators
and to the users respectively, the possibility to favor a class of jobs. The
scheduler priority is introduced to guarantee that no job is starved.

Currently, several of these algorithms are exploited in commercial and open
source job schedulers [8], such as Maui scheduler [8] [4], and Portable Batch
System [11]. However, none of these schedulers deal with an entire range of
system constraints and user requirements.

3. The System Model

The target architecture considered in this paper is a large computational
farm, where each machine may be mono-processor or multi-processor. Each
machine is characterized by its computational power and executes jobs using
the Space-Sharing (SS) policy. In SS, the set of processors in a machine is
partitioned and each partition is assigned to the exclusive use of a job. All the
jobs are considered not preemptable.

Even if the proposed backfilling algorithms do not look for the best matching
among jobs and machines, the machines of the farm are ordered according
to their computational power in order to exploit the most powerful first. This
strategy does not balance the computational load, but favors the response time
of the jobs. We suppose that a set of software licenses may be activated on
the machines of the computational farm. Each license may be activated on a
subset of the machines of the computational farm, for instance, because the
license requires a specific operating system or a specific CPU. Furthermore,
the number of software licenses of a specific type is generally smaller than the
number of machines on which they may be activated. These are floating licenses
because they are activated on the proper machines according to the job requests.
On the other hand, non-floating licenses are permanently bound on a specific
machine, and they can be considered like any other attributes characterizing that
machine. Each job requires a set of software licenses for its execution and may
be executed only on the subset of machines where all the required licenses may
be activated. Each submitted job is characterized by its estimated execution
time and may specify a deadline for its execution.
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4. Heuristics

This section defines a set of heuristics to assign priorities to submitted jobs.
The main goal of this assignment is to fulfill a set of users and system adminis-
trator QoS requirements. Users may require, for instance, the compliance with
job deadlines, while the goal of the system administrator is to optimize the use
of the system resources. The value of the priority P (J) assigned to each job
J is the weighted sum of the values computed by each heuristics. This value
may be dynamically modified at each scheduling session. We have defined the
following heuristics: Minimal Requirements, Aging, Deadline, Licenses, and
Response.

The Minimal Requirements heuristics fixes the associations among jobs and
machines. It selects a set of machines that has the computational requirements
suitable to perform a job. In our study, we considered only the following
requirements: number of processors and sw licenses activable on a machine.

The goal of the Aging heuristics is to avoid job starvation. For this reason
higher scores are assigned to those jobs, which have been present in the queue
for a longer time. The value of the priority assigned to job J is increased as
follow:

P (J)+ = age-factor · age(J)
age(J) = wall-clock − submit(J)

(1)

where age-factor is a multiplicative factor set by an administrator according to
the adopted system management policies, wall-clock is the value of the system
wall-clock when the heuristics is computed, and submit(J) is the time when the
job is submitted to the scheduler.

The main goal of the Deadline heuristics is to maximize the number of
jobs, which terminates their execution within their deadline. It requires a job
estimation execution time in order to evaluate its completion times, with respect
to the current wall-clock. The heuristics assigns a minimal value to any job
whose deadline is far from its estimated termination time. When the distance
between the completion time and the deadline is smaller than a threshold value,
the score assigned to the job is increased in inverse proportion with respect to
the distance. The threshold value may be tuned according to the importance
assigned by the scheduler to this heuristics. Finally, if the job goes over its
deadline before it is scheduled, its score is set to 0. As said before, a job is
scheduled on the first available most powerful machine. Since, jobs with a
closer deadline receive higher priority, this strategy should improve the number
of jobs executed within their deadline. Let ex-execution(J) be the estimated
execution time of job J , and dline(J) the deadline for the execution of J . Let
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us define

te(J) = ex-execution(J) + wall-clock
over-ex-t(J) = k · ex-execution(J) with k > 1
ts(J) = dline(J) − over-ex-t(J)
α(J) = (max − min)/over-ex-t(J)

(2)

where te(J) denotes the job estimated termination time with respect to the
current wall-clock, over-ex-t(J) denotes an overestimation of the estimated
execution time of job J , and ts(J) denotes the time corresponding to the
threshold value of the distance from the deadline. α(J) is the growing factor
computed as the ratio between the predefined range of assignable scores and
over-ex-t(J). The value P (J) is increased by the Deadline heuristics according
to the following formula:

P (J)+ =







min if te(J) < ts(J)
min + α(J) · (te(J) − ts(J)) if ts(J) ≤ te(J) ≤ dline(J)
0 if te(J) > dline(J)

The Licenses heuristics assigns a higher score to jobs requiring a larger
amount of critical resources. The rationale is that when these jobs end their
execution, a set of licenses may become non critical and the scheduler is able to
compute more flexible scheduling plans. Let us define

ρ(l) = requests(l)/total(l)
lc(J) = {l ∈ licenses required by J : ρ(l) > 1}
lc̄(J) = {l ∈ licenses required by J : ρ(l) ≤ 1}

(3)

P (J) is increased according to this formula:

P (J)+ =
∑

l∈lc̄

ρ(l) + d ·
∑

l∈lc

ρ(l)

where d = max{| ∪∀J lc̄(J)|, 1}.

Eventually, the Wait Minimization heuristics favors jobs with the shortest
estimated execution time. The rationale is that shorter jobs are executed as
soon as possible in order to release the resources they have reserved and to
improve the average waiting time of the jobs in the scheduling queue. Let
priority-boost-value be the factor set by an administrator according to system
management policies and min-ex-t = min{ex-execution(J) : J ∈ queue},
the value of P (J) is increased by the heuristics as follows:

P (J)+ = priority-boost-value · min-ex-t
ex-execution(J)
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5. The BF-UNMOD Scheduler

BF-UNMOD implements a Flexible Backfilling strategy by assigning the
highest priority to the first job in the queue, and by ordering the remaining
jobs according to the priority assigned by the heuristics introduced in the
previous section. The first job of the queue preserves the highest priority until
its execution starts, while the rest of the queue is reordered at each scheduling
event. Like Easy Backfilling, BF-UNMOD adopts an “aggressive” strategy by
enabling reservations for the first job in the queue only. The algorithm exploits
priorities to improve job QoS and efficiency in the usage of the system resources.
For instance, the priority of jobs approaching their deadline is increased at each
scheduling session. By increasing the priority of jobs exploiting critical licenses,
BF-UNMOD increases efficiency.

6. The BF-MOD Scheduler

BF-MOD differs from BF-UNMOD because it preserves the reservation until
a job with a higher priority is submitted. When a job J reaches the first position
within the queue, it is allowed to reserve the resources it needs. Further, jobs
are ordered according to their priority and they can be used for backfilling. At
the next scheduling event, the reservation made by J is preserved if and only
if BF-MOD assigns the highest priority to J . Otherwise, another job with the
highest priority is allowed to reserve resources. Suppose, for instance, that a job
with a forthcoming deadline is submitted. BF-MOD schedules this job as soon
as possible by canceling the reservations of the first job in the queue at the next
scheduling event. On the other way, the prediction of the starting execution time
of a job is more difficult. A simple way to avoid job starvation is to increase the
weight computed by the Aging heuristics.

7. Experimental Results

In this section, we present the evaluation conducted to investigate the effec-
tiveness of the scheduling solutions carried out by the proposed schedulers. The
evaluation was conducted by simulations using different streams of jobs, which
inter-arrival times are generated according to a negative exponential distribution
with a different parameter. To conduct our evaluation we developed an event
driven ad-hoc simulator. For each simulation, we randomly generated a stream
of jobs, a set of licenses and a set of machines whose parameters were generated
according to a uniform distribution in the ranges:

Job Estimated execution time [500 ÷ 3000].

Job Deadline Margin [30 ÷ 250].

Number CPUs [1 ÷ 8] required by a job or available on a machine.
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License Ratio [50% ÷ 70%] is the maximum number of concurrently
usable copies of a sw license.

License Suitability [90%] is the probability that a sw license is usable on
a machine.

License Needs [30%] is the probability that a job needs a sw license.

Number of jobs without deadline 30%.

Tests were conducted by simulating a cluster of 100 machines, 20 sw licenses,
1000 jobs, and using five job streams generated with average job inter-arrival
time fixed equal to 4, 6, 12, 24 and 48 simulator time unit. Each stream leads to
a different system workload (computed as the sum of the number of jobs ready
to be executed and the number of the jobs in execution), through a simulation
run. The closer job inter-arrival time is, the higher the contention in the system
is. To obtain stable values each simulation was repeated 20 times with different
job attributes values. To evaluate the schedules carried out by BF-MOD and
BF-UNMOD, we have considered the following metrics:

System Usage. This measures the efficiency of the system, and it is
defined as follows:

System-Usage =
♯CPU -in-use

min(♯total-CPUs, ♯jobs-in-system)

where ♯CPU -in-use is the number of active CPUs, ♯total-CPUs is the
available total number of CPUs, and ♯jobs-in-system sums the number
of waiting jobs and those in execution.

License Usage. This measures the efficient exploitation of the sw licenses.
It is computed as the System Usage metric, in which ♯CPU -in-use
is replaced with ♯Licenses-in-use, ♯total-CPUs with ♯available-Li-
censes and ♯jobs-in-system with ♯licenses-requested-by-jobs.

Out Deadline. This measures the number of jobs executed without re-
specting their deadline. This does not include jobs, which must not be
executed within a given deadline.

Slow Down. This metric is the Average of the Slow Down of the analyzed
jobs (E[SlowDown(J)]). It shows how the system load delays the
execution of jobs, it is computed according to the following expressions:

– SlowDown(J) = TwJ+TexecJ

TexecJ

– SlowDown = E[SlowDown(J)]
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where SlowDown(J) is the Slow Down of the job J , TwJ is the time
spent by J in queue, and TexecJ is the execution time of J .

We have compared BF-MOD and BF-UNMOD with FCFS and BF-FCFS,
which is an implementation of EASY backfilling. The implementation of these
versions of backfilling differ with respect to classical algorithms because of the
target architecture which is a heterogeneous one, rather than a homogeneous
multiprocessor machine. As a consequence, jobs considered by our algorithms
may require different sw/hw resources, like licenses. The original backfilling
algorithms have been modified to consider all these resources when defining a
scheduling plan.

In Figures 1, 2 and 3, the results obtained for the different strategies with
respect to the metrics previously defined are compared. Figure 1 shows the
percentage of the jobs executed do not respecting their deadline. It can be seen
that BF-MOD and BF-UNMOD obtain better results in each test. When the
available computational power is able to maintain low the system contention
(i.e. for 24, 48 average job inter-arrival times), the use of backfilling technique
leads to a higher system usage, which permits to improve the percentage of the
jobs that are executed respecting their deadline. On the other hand, when the
system contention is higher (i.e. for 4, 6, 12 average job inter-arrival times)
the exploitation of the job priority leads to better results. Figure 2 shows the
percentage of system usage. It can be seen that the backfilling technique leads
to a better system usage, in particular when the system contention is higher.

Figure 3 shows the slow down trend through simulation runs. It can be
seen that the backfilling technique is able to drastically reduce the average job
waiting time.

Table 1 shows the percentage of both the sw license usage and the number of
jobs executed out of their deadline, by changing the License Ratio parameter.

The first part of Table 1 shows that to assign higher priorities to jobs requiring
a higher number of critical sw licenses leads to an improvement only when the
sw licenses contention is high. When the sw licenses contention decreases the
proposed schedulers lead to worse results. This occurs because jobs requiring
a fewer number of critical licenses, but with a closer deadline, receive higher
priorities delaying the execution of jobs requiring a higher number of sw licenses
but with a far deadline.

The second part of Table 1 shows that, when the contention on sw license
increases, the scheduler obtains a higher number of jobs executed respecting
their deadlines, by changing the reservation for the first queued job at each
scheduling event.

The experimental results show the applicability of the proposed strategy.
Both BF-UNMOD and BF-MOD outperforms FCFS and BF-FCFS in terms of
system usage and number of jobs that are executed respecting their deadline.
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% License Usage
License Ratio FCFS BF fcfs BF unmod BF mod
30%-50% 55.7 78.5 80.5 79.7
40%-60% 52.1 76.1 75.5 76.3
50%-70% 49.5 74.8 72.2 72.4

% Tardily Jobs
License Ratio FCFS BF fcfs BF unmod BF mod
30%-50% 95.6 78.9 74.5 73.5
40%-60% 95.5 74.8 69.4 69.0
50%-70% 95.5 74.6 66.2 66.2

Table 1. Percentage of used licenses and relative percentage of the jobs executed that do not
respect their deadline.

The differences are considerable for each analyzed job inter-arrival times. In
case of high inter-arrival times, i.e. when the scheduling phase is less critical,
BF-FCFS shows a performance similar to our proposed strategies. BF-UNMOD
and BF-MOD do not improve the slow down over BF-FCFS, which does a good
scheduling plan w.r.t. standard FCFS. In the analyzed cases, BF-UNMOD and
BF-MOD behaves in the same way. This means that the simpler approach
followed by BF-UNMOD is sufficient for the task at end. We are investigating
this issue.
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Figure 1. Percentage of the jobs executed that do not respect their deadline varying the job
inter-arrival time.
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Figure 2. Percentage of used system hw resources varying the job inter-arrival time.
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Figure 3. Slow Down trend varying the job inter-arrival time.

8. Conclusion and Future Work

In this work, we presented a set of extensions to the Backfilling Scheduling
algorithm, designed to allow scheduling over heterogeneous resources. Our
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BF-MOD and BF-UNMOD strategies extend Flexible Backfilling, by utilizing
a variety of heuristics to re-assign priorities to queued jobs. Our proposed
heuristics covered deadline requirements, license usage, aging (to prevent
starvation). We designed two schedulers: one of them reassigns the priorities
of all jobs at every scheduling event, the other one keeps the reservation of
the first job fixed (unless another job gets higher priorities). The proposed
strategies outperform BF-FCFS, with a bigger margin for heavy workloads. We
are investigating the relative value of BF-UNMOD and BF-MOD.
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Abstract Component-oriented development is a software design method which enables
users to build large scale Grid systems by integrating independent and possibly
distributed software modules (components), via well defined interfaces, into
higher level components. The main benefit from such an approach is improved
productivity. Firstly, due to abstracting away network level functionalities, thus
reducing the technical demands on the developer. Secondly, by combining
components into higher level components, component libraries can be built up
incrementally and made available for reuse. In this paper, we share our initial
experiences in designing and developing an integrated development environment
for Grids to support component-oriented development, deployment, monitoring,
and steering of large-scale Grid applications. The development platform, which
is tightly integrated with Eclipse software framework, was designed to empower
the developer with all the tools necessary to compose, deploy, monitor, and steer
Grid applications. We also discuss the overall functionality, design aspects, and
initial implementation issues.
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1. Introduction

Grid systems have become tightly integrated as an indispensable part of the
computing community for solving problems in different domains. Computa-
tional Grids offer remarkable benefits for solving a given problem, especially in
connection with performance and resources. Although the main focus is about
the runtime performance, the actual investment in terms of time includes both
the execution time and the time for software development. This implies that the
development experience has a direct impact on the “time-to-solution” cycle.

The software development can be simplified by following a component-
oriented paradigm [2], where faster development is achieved through higher
levels of abstraction. Although there exists substantial amount of ground work
in facilitating the design and the utilisation of modern Grid systems, rarely do
any of them offer a unified and integrated solution with the support of full-
fledged component-oriented development. It has been recognized, however, that
component technologies and their associated tools become very attractive for
building complex Grid applications [8]. Indeed, when constructing distributed
programs from separate software components, the ability for rapid composi-
tion and the support for dynamic properties at runtime may bring substantial
reductions to the “time-to-solution” cycle.

In this paper, we discuss our initial experiences in developing a component-
based Grid integrated development environment (GIDE). The environment is
designed based on the model-driven approach using standard software tools
for both development and integration within the Eclipse framework [4]. This
essentially means that the platform will be hosted as part of the Eclipse frame-
work, enabling developers to leverage the benefits of both the Eclipse and GIDE
environments.

Our Grid IDE offers extensive support for component-oriented development
and for post-development functionalities covering deployment, monitoring, and
steering. In essence, the environment offers full support for different user groups
of Grid – developers, application users and data-centre operators. In supporting
the development, we embrace the Grid Component Model (GCM) [14], which,
unlike other component models, truly supports various aspects of Grids, in
terms of programming – heterogeneity and dynamicity.

The paper is organized as follows: Section 2 provides an overview of related
work while Section 3 discusses requirements arising from different user groups.
The architectural design of the GIDE is presented in Section 4. Finally, Section
5 concludes outlining some directions for future work.
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2. Related Work

Providing support for Grid applications has been a major focus of many
different projects. However, notable differences exist based on the target user
group being addressed.

Friese et al. [6] discuss a set of Eclipse-based development tools for Grids,
based on the model-driven approach. Their approach is to support the de-
velopment through Unified Modelling by providing a well separated model
mapping layer. In essence, their approach relies on two different layers where
the top-level layer provides the model information while the underlying layer
provides the correct mapping for the underlying platform. Their tool set covers
the automation of this mapping between the layers. Once developed through
the appropriate model, applications can be monitored, deployed and maintained
through the tool set. This is in contrast to our approach, where we rely on
a well-specified Grid component model and a strict software engineering ap-
proach. Further, although both their work and our work rely on the Eclipse
platform for providing rich functionality, our work is more user friendly and
more developer-oriented through permitting visual composition of applications.
However, the target user group covers the same group as ours.

The Grid Engine (GriDE) and sub projects thereof from Sun Microsys-
tems [15] provide substantial support for development. This, however, in
contrast to our work, is entirely targeted towards work-flow based applica-
tions without any explicit notion of components. The underlying platform is
Netbeans [11].

The Web Tools Platform project [16] of Eclipse also aims at providing
support for Grid applications from within Eclipse. However, the main support
is through wizards for creating Java web services or variants without any clear
support for Grid-specific issues.

The g-eclipse [7] project provides an integrated workbench in a similar
manner to us. Its main focus is on what we refer to as steering and provides
tools for monitoring Grid resources, job creation, deployment and inspection.
There is however, no support for graphical composition.

In addition to all these, there are other projects that [9, 3] offer support
for developing Grid applications. However, it is not uncommon to see that
the majority of them do not offer well-specified and clear support for any
Grid-specific component models.

3. An Overview of Requirements

The Grid IDE is aimed at supporting a number of different user groups. We can
classify the user groups as follows:
Application Developers: Application developers require support for developing
Grid applications through graphical composition as well as having to support
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source-code based development. This approach aligns with industrial efforts
in building applications through graphical composition [4]. However, provid-
ing support for developing Grid applications poses additional requirements,
including support for Grid component models and composite components,
and the complexities of deploying these components over distributed systems.
Additional tools are necessary to enable deployment, monitoring of both com-
ponent status and resource, and steering of components to maximise resource
utilisation.
Application Users: The GIDE should facilitate the deployment of applications
and subsequently, the monitoring of deployed applications. The monitoring
process provides a set of opportunities for concerned users to monitor their
running application in real-time. This functionality is also shared with the
application developers who need such facilities to test the application during
development.
Data Centre Operators: Data centres have high turnover rates. Hence there is a
need for a design that would facilitate fast handovers and enable other operators
to assist newcomers in coming to terms with the applications quickly. In order
to achieve this we intend to deliver a standalone application as a Rich Client
Platform (RCP) application, which provides the key functionalities that would
be required by a data centre. These features are arranged within the deployment,
monitoring, and steering perspectives. Also, personalisation of views should be
limited as far as possible, so that a uniform design is visible to all operators in
order to enhance handover and communication.

The following is an overview of the key requirements considered for each user
group during the design of the GIDE.

1 Provide a Grid IDE for programmers and composers.

The main goal is to produce an integrated programming and composing
GUI. It should provide the developer with graphical tools to develop both
normal code and legacy code into primitive components, as well as tools
for assembling existing Grid components into larger composite compo-
nents. Additional support tools should also be provided, such as tools to
search for suitable components, and tools to finalise the configuration of
the application before execution.

2 Provide tools for the deployment of a given Grid component configuration
or application.

The main goal is to develop a component launcher tool that enables
the developer to simply point to a component and execute. Of course
the launcher will need to associate a deployment descriptor with each
launched component. In addition this tool must provide monitoring at
execution. This can be achieved via a components execution monitor tool,
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capable of monitoring the runtime dynamics of set of components, such
as location, memory, status, etc.

3 Provide a Grid IDE for data-centre operators.

A simplified tool for installing, monitoring and mapping necessary com-
ponent code to available resources. The tool must support steering, for
installing, removing, and re-installing new versions of component code.
It must also provide tools for the monitoring of resources. These include
usage level of resources required for execution of component based code,
as well as external services the components might need to execute.

4. Design of the GIDE

Our vision for the GIDE design is to provide the developer with a single
environment for the development pipeline. As can be seen from Figure 1 this
includes graphical composition, deployment, monitoring and steering of grid
based applications.

Monitor &

Steer
DeployCompose

Program /

GCM

Application

(Algorithm)

Grid Interactive Development Environment

Metadata Description incl. ADL, etc.

Obtaining

Solution
Monitor &

Steer
DeployCompose
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(Algorithm)

Grid Interactive Development Environment

Metadata Description incl. ADL, etc.

Obtaining

Solution

Figure 1. Component-Based Program Development Pipeline

Our philosophy is to restrict the programmer as little as possible, and enable
the developer full access to all levels of the language hierarchy. By language
hierarchy we mean that the developer will be capable of switching between
developing graphically via a Component Model view, and coding directly in a
suitable computer language using some middleware API. Given that the under-
lying component model for our platform is GCM we selected Java and Eclipse
as the development platform. This enables the maximum integration with the
ProActive library [12], which is the GRID middleware for this reference imple-
mentation. Eclipse is also well known for its extensibility via the development
of suitable plugins and hence provides a seamless path from code to component
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model in a uniform development platform. This ensures that the target user
groups can benefit from a richer set of functionalities [6].

In addition to this, deployment, monitoring and steering are also being
developed as plug-ins. Some monitoring capability is already present in the
Interactive Control and Debugging of Distribution (IC2D) application [1] which
provides graphical monitoring of Active Objects. This needs to be extended
in order to enable the deployment and monitoring of components. The main
advantage of relying on this plug-in-based approach is that specific features
could be activated (plugged-in) on demand. Figure 2 gives a block diagram
representation of the GIDE design.

Figure 2. GIDE Block Diagram

In designing the front-end, we followed the model driven approach supported
by the Eclipse platform. In the case of composition, our model is the final
output from the IDE — composition. The underlying architecture of the IDE
relies on this model for the functionalities. The model is well supported by a
front end based on the Graphical Editing Framework (GEF) [5] and inherited
features from GEF, such as event handlers.

4.1 Composition

The composition process is enabled via a fully interactive environment.
The underpinning feature which enables such interactivity is the event driven
approach. Eclipse acts as the host platform to our environment. The Graphical
Editing Framework, GMF-Runtime, and Eclipse facilitate handling of different
events within the environment. These events are captured by the host platform
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through a message loop processed by the Eclipse, which are then routed to the
dedicated event handlers or providers of the environment. These event handlers
or providers are linked to the underlying model so that the changes are reflected
upon editing

Figure 3. Component Composition Perspective

A prototype has been completed for the Composition perspective (see Figure
3). The central area focuses the user on the graphical composition view which
provides the developer with a palette of available components that can be
dragged and dropped on the composition canvas. Components can also be
imported from existing Architecture Description Language (ADL) files and
stored in the component palette. ADL files conform to the GCM-specification
for describing compositions such as in [2]. Components can then be resized and
moved, modified and stored. Connections between the interfaces can be drawn
directly between the components using the connection tool. Composition is
achieved by drawing a membrane around a group of components and defining
interfaces. The developer is able to switch between the graphical view, and a
view of the fractal description of the component as an ADL file. The ADL file
can then be exported and used for deployment.
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4.2 Deployment Perspective

This perspective consists of views needed for application deployment. The
main view is of a deployment descriptor editor to map physical hosts to virtual
nodes. Deployment descriptors are used to associate components with virtual
nodes. Virtual nodes are included in ADL files to specify the number of
virtual nodes that the component will need. A developer may have a set of
these deployment descriptors to be used for deployment to different hardware
configurations. To complement this view, a view of the hosts and their resource
statuses is also provided, giving a developer the ability to associate sets of
hosts with each deployment descriptor. Within the deployment perspective the
operator is able to launch components simply via drag-and-drop operations
before moving on to steering.

4.3 Monitoring Perspective

The monitoring perspective provides the views that data centre operators
need in order to properly monitor the environment in which components operate.
See Figure 4 for an example Monitor perspective consisting of component and
resource monitor views. Three types of monitoring are necessary in order to
enable proper management of applications. Firstly, monitoring of resources
provides the hardware status of hosts. This includes CPU utilization, hard disk
space, and other platform specific status information. Secondly, monitoring
of the GCM components themselves provides status and location information
along with a zoom-in feature for monitoring sub-components. Finally, we allow
monitoring of active objects, which is necessary for developers/composers to
debug and monitor applications during the development phase.

4.4 Steering Perspective

More useful for data centre operators, the aim of the steering perspective is
to provide views to enable the operator to start, stop and relocate components.
Building on the monitoring and host views, it has as its main focus a component
monitoring view. This view graphically shows the components location and
their status. An additional view shows the geography and resource availability
of the hosts, virtual nodes, as well as the components that are running on
them. Based on these views, the operator has the facility to start, stop or move
components from one virtual node to another while monitoring their status to
ensure correct execution.

5. Conclusions and Future Work

We have outlined our approach in designing and implementing a component-
based development environment for Grid, targeting different user groups. Our
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Figure 4. Monitor Perspective

environment utilises some existing work and is based on the Eclipse framework.
The environment follows both the model- and event-driven approaches and
offers better support for different user groups. We have implemented a prototype
where the underlying component model is GCM. The prototype provides support
for composition and monitoring of component-based applications. The IDE
provides seamless support for both high level graphical composition, and low
level source code access of the resulting compositions. This approach facilitates
debugging, and does not restrict advanced users by forcing them to solve all
issues via composition for cases where it may not be the most appropriate
solution.

Future work:

While the GIDE currently supports the automatic generation of ADL
files through an export facility, generating Java skeleton source files for
components is an essential feature.

There are plans to include a live composition validation feature, which
will inform the developer when there is an error in the current compo-
sition through non-intrusive visual means (e.g. a red/green flag on the
Composition perspective).
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Further to host monitoring, another important feature is the runtime
monitoring of components, for instance, component queue status, load,
open connections, etc. We intent to provide some support for such tasks
in a feature version.

Wherever applicable, especially in the case of ADL files, we intend to
offer context-specific syntax highlighting within the source code.
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1. Introduction

The Grid [10] is an important program execution platform, especially for
the scientific community. Quite abstractly it resembles batch systems of past
decades when jobs were “submitted to run” on the powerful computational
resources of the day. Today, there is a multitude of physical, software and
application resources that are available, sitting remotely and distributed, and
the Grid system mediates in their management and orchestration. Nevertheless,
it is common knowledge that a lot remains to be done to bring the level of this
mediation at a level that would be satisfactory for the average user, who is well
versed in an application area but is not an expert in the modes and languages of
interaction with the various components of the Grid.

A command line interface (CLI) to Grid services facilitates some tasks.
Often, however, researchers want to seamlessly integrate Grid services into
their working environment, which frequently consists of an interactive scripting
system (e.g. MATLAB, Mathematica, Scilab, Octave, Python). To meet these
challenges, we present a package for accessing and using the Grid infrastructure.
It is implemented in Python and uses ideas drawn from projects like Geodise
[5, 9] and Ganga [3], for building simple abstractions for the four fundamental
Grid user activities, namely Grid access, information retrieval, job submission
and data management. This package is incorporated in Jylab [6, 13], an
extensible scientific computing workbench consisting of a suite of open-source
Java libraries scriptable via a Jython interpreter. The idea is to allow Jylab

users to delegate jobs to the Grid and then collect and analyze output without
leaving the comfort of an interactive environment. We demonstrate the value
and simplicity of our package by building an application consisting of a set of
Python scripts building an index of crawled Web pages to be used for ranking
calculations (PageRank) and search queries. Some of them are scheduled for
execution on Grid resources while less demanding ones are executed locally.
In any case they are composed and coordinated under a common environment,
Jylab, thus making Grid application development a lot easier.

Our application heavily interacts with the Web, but is assigned to Grid
nodes thus saving bandwidth for network connection at user’s site, where
applications are actually launched. Consists of a set of rudimentary crawlers,
packaged as Grid jobs and building link structures. These structures are merged
and expressed in adjacency matrix form to be subsequently used in ranking
calculations performed mainly on Grid nodes. Some of these calculations are
repeated for several parameter values, benefitting from the fact that “parameter-
sweep” type computations are lend themselves well for the Grid platform.

Section 2 presents the proposed API, which actually wraps CLI Grid mid-
dleware commands. We refer to this as ‘Grid-enabling’ the environment and
distinguish it from ‘Grid-ifying’, that is a method for installing it -on the fly-
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to the worker node (WN) to execute the submitted job, present in Section 3.
Section 4 describes our application consisting of jobs to be executed on the Grid
(mainly producing crawl indices) as well as components used to analyze them
locally. Section 5 discusses some of our conclusions and future plans.

2. Grid-enabling Jylab

In wrapping Grid commands we set as a goal to abstract away submitter’s
location, thus providing a common API for Grid interaction for users either at a
user interface (UI) or at a computer connectable to a UI (e.g. laptop at home or
on the move). Since we did not want to demand the installation of a separate
ssh client, we integrated its functionality into Jylab in the form of Ganymed [4],
which is a pure Java library implementing SSH-2 protocol. In what follows,
actual API calls are used for stressing the simplicity of our approach.

A user ‘enters the Grid’ at the Jylab prompt, effectively generating a limited-
lifetime proxy certificate, by issuing a login() command, using its virtual
organisation as parameter (there is a dual command logout() for destroying
his proxy). At this point a Grid object is generated in the background which
inspects whether Jylab is used from a UI or not.

This decides the specific Executor object to be used for forwarding com-
mands during the session. Both local (user at UI) and remote (user elsewhere)
Executors are defined. A remote Executor executes a command over an
SSH session (note that many such sessions can be multiplexed over a single
SSH connection also represented in a special class). Typically three streams
(stdin, stdout, stderr) are associated with the process corresponding to command
execution and the Executor should capture all these and monitor data available
over them. We used a multithreading approach for their inspection in order to
avoid blocking the application for indefinite time intervals.

Commands typically belong to Grid CLI. Wrapping at this level, rather than
at the C or Java API level gives maximum flexibility (various Grid middleware
CLI wrappers can be constructed all sharing common notation; currently typical
gLite commands have been wrapped) and is comparatively simple to implement:
Captured streams from processes executing the commands can be used for their
communication to the Jylab environment. Output streams follow certain patterns
and regular expressions can isolate useful info (e.g. the ID of a submitted job).

After entering the Grid a user usually wants to get information either on jobs
already executing (jobs()) or other generic info concerning Grid infrastructrure
or his credentials (info()). He may also request moving files either into the
Grid (upload()) or out of it (download()), removing them (remove()) or
replicate some files across multiple storage elements (SEs) for enforcing a good
degree of proximity of his data to actual computation node if compute element
(CE) has to be chosen arbitrarily (replicate()). Also Grid file catalog (LFC)
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commands are wrapped (e.g. listdir()). A general guide is to use -if possible-
function names from the corresponding standard Python os module.

Apart from functions, our Jylab Grid interface also comes with a user vis-
ible class Job, perhaps the most important of our software entities. It has
methods with self-explanatory methods like submit(), cancel(), status(),
getOutput(), readFile(); a typical use of this class is depicted in Fig. 1.

from jylab.grid import *

# entering the grid

login(<vo>)

# submitting a job

job = Job()

job.vo = <vo>

job.inputsandbox = [’/path/to/file1’,’/path/to/file2’,

’/path/to/file3’]

job.outputsandbox = [’outfile1’.’outfile2’]

job.arguments = "file1 10"

job.submit()

job.status()

job.getOupout()

job.readFile("std.out")

Figure 1. Using Job class

3. Grid-ifying Jylab

As described previously, Jylab can be used as a transparent environment for
accessing Grid functionality: Initiating and terminating Grid sessions, describ-
ing and submitting jobs as well as extracting information on Grid infrastructure
and managing data files are seamlessly supported in Jylab through a minimal but
powerful function/class API. The user keeps working in a familiar workbench
abstracting Grid functions into conveniently named notations.

However a Grid job is executed at WNs and Jylab is probably not available.
So one might argue that it cannot be the runtime environment for our application.
In other words, when developing Grid software, Jylab should not be an option
and so some of the advantages it could offer in terms of homogeneity are lost.

Fortunately, this misfortune turns to be accidental and a remedy is available:
Jylab consists of open source components (typically Java libraries scriptable
through Python scripts) and an emerging API organizing components’ names-
paces under a well defined hierarchy. So part of the solution would be a flexible
repackaging of these components; then, in a preprocessing stage, a Jylab Grid
job could assemble its runtime environment ‘on the fly’, by downloading and
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installing Jylab on the currently executing WN - not known beforehand. Loosely
inspired by portage package management system, we implemented a simple
abstraction of a package (module jylabme.py) for each component supporting
at minimum the following methods:

wget() locally retrieves open source archives from Web repositories.

adapt() adapts the archive for Jylab (usually discarding some of its
content and repackaging).

upload() (copies and) registers repackaged archive with a Grid location.

download() downloads component files from a Grid location.

install() installs the packages -typically to a WN- usually by extract-
ing downloaded archives.

Containing module is coded in standard Python (available at all sites) and
since it actually assembles Jylab runtime environment, it should be considered
as the entry point for all Jylab applications executing at Grid nodes. It imports
gridme.py module: this is a lightweight wrapper (also coded in standard
Python) of commonly used Grid commands, with names identical to the ones
chosen in jylab.grid, however aiming at Grid-application interactions only
at bootstrap time.

The application starts execution just after the assembly is complete and
is typically implemented as a series of Jylab scripts. In practice bootstrap
lasts < 10 secs, to be amortized by ‘application proper’ execution time, with
archives replicated at nearby SEs. Note that neither version dependency or Jylab
persistency mechanism is included in our abstraction since needed packages are
considered already known at submission time and local Unix accounts at WNs
are dynamically assigned to Grid users. A high-level model of this approach is
depicted in Fig. 2.

4. Applying the API: An Internet application on the Grid

In what follows we demonstrate the feasibility of running a bandwidth-costly
Internet application over Grid nodes. In particular we argue that the Grid can
be used for operating high-performance, on-demand crawlers, collecting and
indexing specific parts of the Web. Crawled data can be used in serving search
queries or drive further analysis using well established methods from Internet
algorithmics. As a result, we obtain significant savings in network bandwidth
and computational resources at the submitter’s site: multiple crawling/indexing
jobs can be submitted in parallel and costly numerical linear algebra calculations
can be delegated to Grid nodes.
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Figure 2. A high-level view of Grid-ifying Jylab

We stress the fact that all computations are expressed in Python, often
described as ‘executable pseudocode’ due to its flexibility. Mature Java frame-
works are utilized, however without making it necessary to switch to Java
coding; even Grid-interactions are wrapped in Python modules as presented
earlier. The fact that only a single (interactive) syntax has to be learnt helps
the practitioner in focusing on his application rather on the peculiarities of
assembling heterogeneous software stacks. On the other hand, performance
hotspots can always be coded and compiled in Java; note, however, that in a Grid
application like ours, perhaps the most decisive bottleneck becomes the network
itself, only remotely followed by the cost of crossing middleware layers, but
both these factors lie well beyond ordinary user’s control. Although geared
towards stressing the convenience of our proposed Grid API, this application
serves yet another purpose: The user not only analyzes and uses a dataset but
also collects and builds it on-demand. So not only data processing but also data
compilation is personalized.

Our application consists of two phases: Grid phase (crawling, indexing, part
of data analysis; executing at Grid nodes, realized as Grid jobs) and Local phase
(visualization, part of data analysis, searching; executing at user’s machine).

4.1 Grid phase

The main component for the crawling/indexing phase executed at Grid nodes
is Nutch. Nutch [7–8] is an open source search engine able to operate at the
local filesystem, an intranet or even at the entire Web scale providing advanced
crawling, indexing and searching functionality. It typically manages three data
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structures, organized in separate directories under the search engine’s data top
folder by default.

The Web database hosts link information on the Web graph being crawled;
both nodes and edges of the graph structure are included (respectively imple-
mented by page and link entities). Each set of segments contains pages fetched
and indexed in a single iteration of the crawl process. Finally the index merges
segments’ indices with duplicates deleted; it is actually the inverted index of all
the documents already retrieved. Its operation follows a well defined pattern:
A Web database is created (if not already existing) and initialized with a set of
URLs. These URLs (a fetchlist) drive crawlers (fetchers) that download content
into a segment(directory); links extracted from these pages update the Web
database and a new fetchlist is generated and assigned to fetchers to populate a
fresh segment in a generate/fetch/update iterative loop, exited only when crawl
depth is reached. Then segments are indexed and resulting indices are suitably
merged in a single index to be subsequently used in searching. This phase
mainly involves the execution of Jylab scripts, so a Jylab gridification step as
previously described is necessary; required packages are however ensured to
have already been uploaded to a neighboring SE (relative to the desirable target
CE) and so the download-install time at the WN is minimized (a few seconds).
The main part of our application follows, effectively executing

crawl(urls, depth), with urls a list of seed URLs and depth our
crawl’s depth; this function wraps Nutch functionality in a most conve-
nient way, and

a handful of commands for archiving crawl data produced at WN (crawl
archive) and uploading it to a Grid storage location (lfn)

Our application can also be instructed to print timing, environment, etc informa-
tion to stdout; as stdout is captured and returned to submitter, this was a very
handy monitoring tool for us (after all our output is safely stored at a SE by job’s
finish time). Note that each such crawl/indexing job has only three parameters,
(urls, depth, lfn) and so many job instances of this type can be easily
generated and scheduled to Grid resources; a Nutch specific configuration file
can alternatively fine-tune many aspects of the procedure.

4.2 Local phase

Grid phase produces a crawl archive. This archive can be downloaded locally
and used in at least two scenaria. We can use Nutch’s Web application, suitably
hosted in a servlet container (e.g. apache tomcat) to perform search queries
on the crawl archive (Fig. 3, left). The Web interface is similar to the one
offered by commercial search engines. It even has some unique features, such
as a facility explaining the score for each hit together with a ranking of the
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containing document among other metadata(Fig. 3, right). Hit scores are
computed through a dot-product between document and query vectors (in a
Vector Space Model for IR) as documented e.g. in [2]. Also for a document
boost = score ∗ ln(e + inlinks) and score is PageRank-like value attained
by running LinkAnalysisTool in Nutch (by default disabled for relatively
small scale crawls like ours, score = 1.0). Note that ranking algorithms used
by commercial search engines are highly proprietary and accessing them is out
of the question. Searching in Jylab, however, can be performed interactively by

Figure 3. Nutch search engine. The results of a query submitted to the web interface of Nutch
search engine are shown; the underlying information index has been collected by running Nutch
(crawling/indexing phase) over Grid nodes (left). Metadata and internal algorithm details for
ranking calculations; of interest to data-mining researchers (right).

means of a Nutch API. Using this facility, we also reconstructed the crawled
graph structure from Web database in a form suitable for Jung.

Jung [15] is a framework for the analysis and visualization of network data.
At minimum, it provides constructors for vertices, edges and graphs of various
types, organized in a well engineered class hierarchy. Arbitrary user data can
be attached to these objects, predicates filtering out graph structural elements
or constraining a graph composition can be defined and event handling actions
be registered. Also a collection of algorithms is included for ranking graph
elements, detecting similarity (clustering) or structural equivalence (block-
modelling) between them, calculating graph topology measures, generating
synthetic networks and transforming. It also features a visualization system
composed of layout, drawing area and renderer objects: A renderer paints
vertices and edges of a graph into a drawing area using element locations calcu-
lated by the respective layout. Various standard graph formats are supported for
importing/exporting graph data into this framework.
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We have integrated Jung’s visualization and ranking capabilities in a con-
venient interface (Fig. 4). Link structure from Grid-produced crawls can be
explored interactively. Mouse clicks on nodes trigger small reports on the
respective page: url, immediate neighbors and ranking scores calculated by
PageRank [16, 14] and HITS [12] algorithms are produced. Such analysis could
be delegated to the Grid phase for large graphs; Jung provides graph to sparse
matrix converters and linear algebra algorithms can readily be applied to the
resulting matrix objects [1]. Note, however, that in the specific examples pre-
sented here, the resulting graphs are small enough to be locally ranked almost
instantly. Note that this integration can be implemented in less than 100 lines of
Python code in Jylab! PageRank calculations in particular are packaged into
functions parameterized by teleportation parameter α, permitting fast sweeps
of PageRank evolution under variations of α for the intranet scale crawls of our
examples.

Figure 4. Integrating Jung’s visualization and ranking capabilities in a convenient interface

5. Conclusions and future work

Easy to use APIs are critical for the rapid prototyping and development of
Grid applications. We presented such an API tightly integrated with Jylab, an
interactive scientific workbench, flexible enough to be easily deployable on Grid
nodes and thus serve as the runtime platform for Grid applications (available for
download at [6]). The application we described collects, indexes and analyzes
Web pages using Grid resources but also provides collected data archives for
subsequent local analysis and visualization. Parts of the analysis model Web
data as matrix objects and can readily exploit well known numerical linear
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algebra algorithms. We concluded from our experiments that the Grid API
contributes toward code simplicity and readability. We anticipate that it will fa-
cilitate harvesting and harnessing network and computational resources in order
to create suitable Grid platform utilization scenaria. In the context of Internet
algorithmics that is a major thrust of our applications research, we envisage a
system in which Web accessible material could be dynamically collected, its
content analyzed, and results used to steer subsequent data collection-analysis
cycles, all within the Grid. User-friendly integration with existing Problem
Solving Environments [11] and well established computing practices will be
key features of this effort.
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Abstract This paper presents the Integrated Toolkit, a framework which enables the easy
development of Grid-unaware applications. While keeping the Grid transparent to
the programmer, the Integrated Toolkit tries to optimize the performance of such
applications by exploiting their inherent concurrency when executing them on the
Grid. The Integrated Toolkit is designed to follow the Grid Component Model
(GCM) and is therefore formed by several components, each one encapsulating a
given functionality identified in the GRID superscalar runtime.

Currently, a first functional prototype of the Integrated Toolkit is under devel-
opment. On the one hand, we have chosen ProActive as the GCM implementation
and, on the other, we have used JavaGAT as a uniform interface to abstract from
the underlying Grid middleware when performing job submission and file transfer
operations. Thus far, we have tested our prototype with several simple applica-
tions, showing that they maintain the same behaviour as if they were executed
locally and sequentially.
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1. Introduction

This paper focuses on the specification and design of the Integrated Toolkit:
a framework which enables the easy development of Grid-unaware applications
(those to which the Grid is transparent but that are able to exploit its resources).
The Integrated Toolkit is mainly formed by an interface and a runtime. The
former should give support to different programming languages, graphical tools
and portals, and should provide the application with a small set of API methods.
The latter should provide the following features:

The Grid remains as transparent as possible to the application. The user
is only required to select the tasks to be executed on the Grid and to use
few API methods.

Performance optimization of the application by exploiting its inherent
concurrency. The possible parallelism is checked at task level, automati-
cally deciding which tasks can be run at every moment. The most suitable
applications for the Integrated Toolkit are those with coarse-grain tasks.

Task scheduling and resource selection taking into account task require-
ments and performance issues.

This paper is organized as follows. We begin by proposing a design for the
Integrated Toolkit in Section 2. Then, using a simple example, we give some
usage and operation details of a first Integrated Toolkit prototype in Section 3.
After that, we present some preliminary tests of the prototype in Section 4.
Finally, we describe some related work in Section 5 before the conclusions and
future work of Section 6.

2. A GCM-based design of the Integrated Toolkit

This document proposes an Integrated Toolkit based on the Grid Component
Model (GCM) [1], a component model intended for the Grid which takes the
Fractal specification [2] as reference. Therefore, the Integrated Toolkit runtime
is defined as a set of Fractal components, each of them in charge of a given
functionality. The design, inspired on the GRID superscalar framework [3],
comprises the following components:

Task Analyser (TA): receives incoming tasks and detects their precedence,
building a task dependency graph. It implements the interface used by the
application to submit tasks: when such a request arrives, it looks for data
dependencies between the new task and all previous ones. When a task
has all its dependencies solved, the TA sends it to the Task Scheduler.

Task Scheduler (TS): decides where to execute the dependency-free tasks
received from the TA. This decision is made accordingly to a certain
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scheduling algorithm and taking into account three information sources:
first, the available Grid resources and their capabilities; second, a set of
user-defined constraints for the task; and third, the location of the data
required by the task. The scheduling strategy could also be changed on
demand, thanks to the dynamic and reconfigurable features of GCM.

Job Manager (JM): in charge of job submission and monitoring. It
receives the scheduled tasks from the TS and delegates the necessary file
transfers to the File Manager. When the transfers for a task are completed,
it transforms the task into a Grid job in order to submit it for execution
on the Grid, and then controls the proper completion of the job. It could
implement some kind of fault-tolerance mechanism in response to a job
failure.

File Manager (FM): takes care of all the operations where files are
involved, being able to work with both logical and physical files. It is a
composite component which encompasses the File Information Provider

(FIP) and the File Transfer Manager (FTM) components. The former
gathers all information related with files: what kind of file accesses have
been done, which versions of each file exist and where they are located.
The latter is the component that actually transfers the files from one host
to another; it also informs the FIP about the new location of files.

3. Usage and operation example of the Integrated Toolkit

Taking the design presented in Section 2 as reference, we are working on a
first Integrated Toolkit prototype. Regarding the implementation choices, we
took Java as the programming language and ProActive 3.2 and JavaGAT 1.6 as
the base technologies.

ProActive [5] is a Java Grid middleware library for parallel and distributed
computing. Among some other features, it provides an implementation of the
Fractal specification with some extensions, thus contributing to the develop-
ment of GCM. Hence, our Integrated Toolkit is in fact formed by ProActive
components and benefits from the following GCM properties: hierarchical
composition, separation between functional and non-functional interfaces, syn-
chronous and asynchronous communications, collective interactions between
components and ADL-based description of the component structure.

JavaGAT is the Java version of the Grid Application Toolkit [5], which is a
generic and flexible API for accessing Grid services from application codes,
portals and data management systems. The calls to the GAT API are redirected
to specific adaptors which contact the Grid services, thus offering a uniform
interface to numerous types of Grid middleware. Our Integrated Toolkit uses
JavaGAT for job submission and file transfer operations.
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The following subsections explain, through a simple example, how to write
an application that uses the Integrated Toolkit and which call sequences between
subcomponents take place when executing it.

3.1 Original code of the sample application

Consider a Java application which generates random numbers and cumula-
tively sums them (from now on, we will call it Sum). Figure 1 shows its main
code.

initialize(f1);

for (int i = 0; i < 2; i++) {

genRandom(f2);

add(f1, f2); // f1 <- f1 + f2

}

print(f2);

Figure 1. Original code of Sum. All method parameters (f1, f2) are file names. After putting a
zero value in f1 (initialize), random numbers are generated (genRandom) and then added to the
accumulated sum stored in f1 (add).

3.2 Selecting the tasks and inserting API method calls

In order to make the application use the Integrated Toolkit, the programmer
is only required to write a Java interface declaring the tasks that will be executed
on the Grid and to use few API methods.

public interface SumItf {

@MethodConstraints(operatingSystemType = "Linux")

void genRandom(

@ParamMetadata(type = Type.FILE, direction = Direction.OUT)

String f

);

@MethodConstraints(processorArch = "Intel", processorSpeed = 1.8f)

void add(

@ParamMetadata(type = Type.FILE, direction = Direction.INOUT)

String f1,

@ParamMetadata(type = Type.FILE, direction = Direction.IN)

String f2

);

}

Figure 2. Annotated interface for Sum
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Concerning the interface, Java annotations [11] must be used to specify some
metadata about the tasks. On the one hand, it is mandatory to state, for each
parameter of a task, its type (currently, we only support the file type) and its di-
rection (IN, OUT or INOUT). On the other, the programmer can also impose the
constraints that a given resource must fulfil to execute a certain task (regarding,
for instance, the operating system or the architectural characteristics) Figure 2
corresponds to the interface of Sum, containing the mentioned metadata.

Regarding the API, it offers methods to start and stop the Integrated Toolkit,
request the execution of tasks and open files to work with them locally. Figure 3
shows the final code of Sum, resulting from the inclusion of API calls. Currently,
the programmer has to deal with all these methods but, in the future, we will
implement a mechanism to free (totally or partially) the application developers
from that duty; for that purpose, some possible alternatives could be a source-
to-source compiler, a code generation tool or a modified Java class loader.

initialize(f1);

IntegratedToolkit it = new IntegratedToolkitImpl("Sum");

it.startIT();

ITExecution itExe = (ITExecution)it;

for (int i = 0; i < 2; i++) {

itExe.executeTask("genRandom", 1,

f2, ParamType.FILE_T, ParamDirection.OUT);

itExe.executeTask("add", 2,

f1, ParamType.FILE_T, ParamDirection.INOUT,

f2, ParamType.FILE_T, ParamDirection.IN);

}

String finalF2 = it.openFile(f2, OpenMode.READ);

print(finalF2);

it.stopIT(true);

Figure 3. Code of Sum with calls to the Integrated Toolkit API

3.3 Internal processes and communications

This section describes the main internal processes of the Integrated Toolkit
which are triggered when executing the Sum application, that is, what each
subcomponent does, which communications take place between subcomponents
and in which order.

3.3.1 Initialization. After being deployed and started, the components
must be initialized. For that purpose, the Integrated Toolkit has a multicast
interface which transforms a single initialization invocation on the runtime into
a list of invocations and forwards them to all the subcomponents.
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FIP

TS

FM

TA JM

FTM

Figure 4. Initialization of the Integrated Toolkit

3.3.2 Task analysis, scheduling and job submission. When the initial-
ization phase finishes, the task processing can begin. As said in Section 2, the
TA is the component which receives task execution requests from the application.
In the case of Sum, a total of 4 tasks will be issued (2 per iteration).

The TA registers the file accesses of a task with the help of the FIP, which
keeps track of the file versions that are eventually created: whenever a task
writes a file it creates a new version of that file, and this new version is assigned
a renaming. Then, the TA discovers the dependencies between the task and
all previous ones, thanks to a structure where it stores the last writer task for
each file. The current Integrated Toolkit only considers file dependencies, while
in future versions other kinds of data (scalars, arrays, etc.) will be taken into
account.

The task dependency graph for Sum is the one depicted in Figure 5. The
dependencies represented with dashed lines are automatically removed by
means of the renaming technique, so that only RaW ones remain.

genRandom

T1

genRandom

T3

T2

add

T4

add

dependencies

Real

dependencies

False
WaW(f1)

WaR(f1)
RaW(f1)RaW(f1)

WaW(f2)

RaW(f2)

Figure 5. Task dependency graph of the Sum application

Tasks with no dependencies pass to the next step: the scheduling. According
to the graph of Sum, the first suitable tasks are T1 and T3: they can be run in
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parallel on the Grid. When receiving these tasks from the TA, the TS decides,
following a certain scheduling algorithm, the destination hosts where they will
be executed. Currently only a FIFO algorithm is implemented, though more
complex ones will be added in the future to try, for instance, to reduce the
execution and transfer times.

Once the scheduling is done, the TS communicates its decision to the JM.
For a given task, the latter requests all the necessary file transfers to the FTM,
which invokes the JavaGAT API to actually perform them. When all the input
files of the task are in the destination host, the JM transforms the task into a
GAT job, submits it to the Grid and subscribes to its state change notifications.

3.3.3 Task completion. Whenever a callback which informs about the
end of a job is received, the JM notifies the TS of that fact. At its turn, the TS
forwards the notification for the corresponding task to the TA. If the task has
finished successfully, the TA removes the edges to all its successors from the
graph and searches for newly dependency-free tasks to send for scheduling;
otherwise, an error is thrown (see Section 3.3.6 for further details about error
situations). For instance, in the case of Sum, T2 sees how all its dependencies
are solved after T1 ends.

3.3.4 Opening a file. The Integrated Toolkit interface also offers a
method to work with a file on the user’s local machine. A call to openFile in
a given point of the application makes the API perform the following actions:
first, it registers the file access by invoking the FIP; second, if the open call
is for reading or appending, it requests to the TA to be notified when the last
writer task of the file ends; third, also for read and append modes, it makes the
last version of the file be transferred to the local host of the user by contacting
the FTM; finally, it returns the file name of this version, so that the application
can open the necessary I/O streams.

3.3.5 End of the application. When the application reaches a stopIT
call, the API makes it block until three events take place: first, the completion
of all the tasks created until that moment; second, the transfer to the user’s local
host of all the result files, that is, the final version of each of the files accessed
by the application; third, the deletion of all intermediate file versions, which
will not be used anymore. The first event is notified by the TA, and the two last
ones are triggered by the FTM.

Furthermore, the stopIT method allows to specify whether the Integrated
Toolkit must finish definitely or not. In the first case, all the subcomponents are
stopped, cleaned and killed, while in the second one they are just stopped, so
that they can be restarted later and accept new task execution requests.
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3.3.6 Error handling. During the execution of the application, the Inte-
grated Toolkit runtime can experience errors of different kinds: a job submission
that has failed, a problem with a file transfer, an exception in some point of
the code, etc. Unfortunately, managing an error produced inside the Integrated
Toolkit while it is working is not a trivial issue. Since all its subcomponents
are interconnected and communicate constantly, a failure in one of them could
impede the overall system to work properly. The general response to such a
situation should be to stop the components as quickly as possible; however,
there are a couple of points that must be considered when facing an error.

On the one hand, the components that form the Integrated Toolkit cannot
be stopped in any arbitrary order because they have data dependencies. A
dependency between two components A and B appears when A invokes a
synchronous method on B and waits for its result. The problem arises if B is
stopped before it can serve the request from A; in that case, A would remain
blocked waiting for the result of the call and it could never serve the stop control
request1.

If one invokes the stop method of the Integrated Toolkit life-cycle controller
(stopFc, see [2]) the call is forwarded to all the hierarchy of components in an
a priori unknown order. Nevertheless, the synchronous calls between subcom-
ponents lead to the dependencies shown in Figure 6, and such dependencies
impose a stop order that must be respected; otherwise, we could experience a
deadlock. One solution could be to redefine the Integrated Toolkit life-cycle
controller to ensure that the subcomponents are stopped in an adequate order,
specifically the following one: TA, TS, JM, FTM, FIP.

TA TS JM

FTMFIP

FM

Figure 6. Data dependencies between Integrated Toolkit subcomponents

On the other hand, it is not enough to stop the subcomponents when an
error appears, because that suspends their internal communications but does not

1This theoretical behaviour has only been checked with ProActive components, therefore it might differ for
other implementations of the Fractal/GCM model.
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finish the ongoing operations on the Grid. Consequently, a cleaning process
must begin after stopping the subcomponents, and it includes two main actions:
first, canceling the submitted jobs and unregistering for their state notifications;
second, avoiding the beginning of new transfers (the JavaGAT API does not
allow to cancel a transfer in progress2). This postprocessing can be done by
means of a custom controller, contacted by the life-cycle controller when the
component is stopped.

The methodology to face an error that has been explained above is probably
the best one, but currently it cannot be applied efficiently in practice. To stop
the components as fast as possible, the stopFc invocation should be placed in
the head of each subcomponent request queue, so that it could be served next.
However, ProActive does not allow to give higher priority to control requests
for the time being; it is certainly possible to examine the whole queue each
time a request is going to be served (searching for an eventual stop call), but
that would clearly lead to a poor performance. Therefore, trying to stop the
Integrated Toolkit while in operation would take a while, and during this time
the system is doing useless work and could behave unpredictably.

The currently adopted solution aims to minimize the time between the error
and the finalization of the system, while informing the user of what has exactly
happened. Whenever an abnormal situation occurs, the component that detects
it tells the Integrated Toolkit API about it. Then, the API invokes a multicast
immediate service3 that is forwarded to every component and that performs
the necessary cleanup. After that, without actually stopping the components,
a kill method is invoked on the Integrated Toolkit in order to destroy all the
component structure. Lastly, the error message is returned to the user.

4. Preliminary tests

Our prototype is still in the test phase. Thus far, some preliminary tests have
been performed. The objective of these tests was not to obtain performance
measures, but to show that applications which benefit from the Integrated Toolkit
maintain the same behaviour as if they were executed locally and sequentially.
Concerning the GAT adaptors, we used the local, Globus Pre-WS and SSH ones
for job submission, and the local, GridFTP and SSH ones for file transfer.

Following subsections describe some of the chosen applications and which
functionalities of the Integrated Toolkit we wanted to test in each one.

2The JavaGAT API methods to perform file transfers are synchronous and block the thread that invokes them
until the transfer is finished.
3ProActive immediate services permit to run a method of a component server interface without having to
wait in the request queue. The execution takes place immediately and in parallel with the normal services of
the component.
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4.1 Matrix multiplication

The Matmul application multiplies two matrices. It takes as input the matrices
divided in blocks, which are themselves smaller matrices of doubles. Tasks
work with blocks, which are stored in files. In our tests, we varied both the
number of blocks of the input matrices and the number of elements in each
block. More blocks implies more tasks, and larger blocks means tasks which
are more coarse-grained.

We began with Matmul to perform a general and simple test of the Integrated
Toolkit. The results showed that its main functionalities were performing well.
The following points were checked: component deployment, start and stop; task
creation, analysis and scheduling; file version management and transfer; job
submission and monitoring.

4.2 Cholesky decomposition

The Cholesky application decomposes a symmetric positive-definite matrix
(A) into a lower triangular matrix (L) and its transpose (U). As Matmul, all
matrices are divided in blocks, which are taken by tasks as their unit of work.

With Cholesky we wanted to take the task analysis and scheduling tests a
step further. Concerning the analysis, Cholesky generates a highly connected
dependency graph, which represents a much more challenging test for the TA.
Regarding the scheduling, there are five types of task (that is, five different
methods to execute remotely) on which to impose particular constraints, and
that allows to check if they are actually scheduled on the resource/s whose
capabilities match their constraints.

The results were satisfactory, demonstrating that the Integrated Toolkit is
able to manage applications with complex dependencies and to schedule their
tasks respecting the required constraints.

4.3 Counter increment

The Counter application performs several increments on the integer value
contained in a file. Some of the increments are spawned as remote tasks, and
some of them are executed locally.

The objective of this application was to test the openFile method, since it
must be called before a local increment in order to get the right file version. The
method was invoked alternatively with the write-only access mode to replace
the value of the counter and with the read-write one to increment it; in the case
of the latter, the file needs to be transferred to the user’s local host, while with
the former it is not necessary thanks to the renaming technique.

The results showed that the counter was properly incremented both in the
local and remote ways, and its final value was the expected one.
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5. Related work

Other approaches that enable the programming of parallel applications for
computational Grids are Satin, HOCs and ASSIST. Satin [6] is a Java based
programming model for the Grid which allows to explicitly express divide-and-
conquer parallelism. It uses marker interfaces to indicate that certain method
invocations need to be considered for potentially parallel (spawned) execution.
Moreover, synchronization is also explicitly marked to wait for the results
of an invocation. HOCs [7] is a component-oriented approach based on a
master-worker schema. Higher-Order Components (HOCs) express recurring
patterns of parallelism that are provided to the user as program building blocks,
pre-packaged with distributed implementations. ASSIST [8] is a programming
environment aimed at providing parallel programmers with user-friendly, effi-
cient, portable, fast ways of implementing parallel applications. It includes a
skeleton based parallel programming language and a set of compiling tools and
runtime libraries.

Besides, there exist several systems that permit workflow definition and
execution on Grids, for instance P-GRADE and SEGL. P-GRADE [9] is a
general purpose, workflow-oriented computational Grid portal. It offers a high-
level, graphical workflow development system and an execution environment
for various Grids. SEGL [10] allows to define complex workflows which can
be executed in a Grid environment, and supports the dynamic generation of
parameter sets. It also makes possible the execution of sets of independent tasks
of interdependent jobs which can turn either synchronously or asynchronously
on heterogeneous systems.

6. Conclusions and future work

We have proposed a componentised design of the Integrated Toolkit, a
framework which facilitates the development of Grid-unaware applications and
which can also provide Grid-aware ones with some functionalities. After that,
we have presented a first implementation of the Integrated Toolkit through an
example, explaining how to write a simple application that uses the Integrated
Toolkit and which internal processes are triggered in order to execute it. Finally,
we have shown that the Integrated Toolkit prototype has been able to run several
sample applications on the Grid.

Furthermore, thanks to the componentised nature of the design presented in
Section 2, we believe that the Integrated Toolkit could also offer an alternative
to develop Grid-aware applications, which could use the runtime as a whole or
deploy solely specific subcomponents. For instance, a programmer interested
in adding a scheduling functionality to an application could choose to deploy
only the TS subcomponent, binding its interfaces to the ones of the application
components.
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Forthcoming phases of this project will:

Extend and improve the functionalities of the Integrated Toolkit subcom-
ponents. Some of the envisaged features are: fault-tolerance mechanisms
for job submission and file transfer, new scheduling algorithms, check-
pointing of tasks to avoid resuming the application from scratch in case of
failure, dependency analysis which takes into account different data types
(not only files but also scalars and arrays), identification of the critical
path in the task dependency graph, and so on.

Study the possible bottlenecks in our component design. Synchronous
calls cause waiting times that could be partly avoided if the data depen-
dencies are minimized. Moreover, too frequent communications between
components could also degrade the performance of the system.

Implement controllers to steer the behaviour of the Integrated Toolkit.
These controllers could serve to modify certain parameters (such as the
scheduling algorithm used), change the overall structure (add/remove/
bind/unbind components), manage the persistence of the application (in
relation to the checkpointing and fault recovery mechanism), etc.
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Abstract We combine and extend recent results in autonomic computing and structured
peer-to-peer to build an infrastructure for constructing and managing dynamic vir-
tual organizations. The paper focuses on the middle layer of the proposed infras-
tructure, in-between the Niche overlay system on the bottom, and an architecture-
based management system based on Jade on the top. The middle layer, the
overlay services, are responsible for all sensing and actuation carried out by the
VO management. We describe in detail the API of the resource and component
overlay services both on the management node and the nodes hosting resources.
We present a simple use case demonstrating resource discovery, initial deploy-
ment, self-configuration as a result of resource availability change, self-healing,
self-tuning and self-protection. The advantages of the design are 1) the overlay
services are in themselves self-managing, and sensor/actuation services they pro-
vide are robust, 2) management can be dealt with declaratively and at a high-level,
and 3) the overlay services provide good scalability in dynamic VOs.
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1. Introduction

The context of this work is the effort to combine, integrate and extend
recent results in autonomic computing with structured peer-to-peer systems.
The ultimate goal is to build an infrastructure for constructing and managing
dynamic collaborative virtual organizations (VOs) for resource sharing. This
paper focuses on the middle layer of this infrastructure, a number of vital
VO-management services. We outline the design of these overlay services,
and describe in detail two of them. We also briefly show how these services
interface with high-level management functions and the underlying structured
peer-to-peer system.

We target Internet-based VOs characterized by high levels of dynamism along
two dimensions. Firstly, the identities of the individual members and resources
available to the VO is continuously changing. Secondly, the number/amount of
resources and members also changes in time.

Self-management (or autonomic computing) is actively pursued as human
system administration is expensive, error-prone, and often non-optimal. There
is a considerable body of work in this area, and some progress has been made.
In VOs with high rates of dynamism self-management becomes crucial.

The focus in this paper is on management aspects of component-based
(distributed) applications/services running within a VO. The application needs
to be maintained in the context of dynamic VOs where the individual resources
being used by the application components leave the system, as more suitable
resources enter the system, as loads change, as resource fail, etc.

The paper is organized as follows. First we introduce our three-layered
architecture and its role in VO management, and describe its layers focusing on
the overlay services. We then present a simple use case, involving deploying
an application and instrumenting appropriate self-* policies. The use case con-
centrates on the interaction between the overlay services and the management
logic. Finally, we relate to other work and conclude.

2. Architecture

Within the framework set by VO policy, members provide resources and
services to the VO. VO management monitors, aggregates, presents and controls
these resources and services to/for the VO members. Services are also created
within the VO making use of the aggregated resources.

One of the tasks of VO management, and the focus of this paper, is deploying
and managing applications that make use of aggregated computation and/or stor-
age facilities. Managing these applications, presented to members as services,
in the face of dynamism will require frequent management interventions.

Our infrastructure for managing dynamic VOs can be split into three layers.
The topmost layer, the management policy/logic layer, consists of high-level
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management functions and tools. This let VO managers set appropriate policies
for applications and services that are run in the VO. This includes aspects of
application configuration, healing, and tuning, as well as policies that priori-
tize between applications/services upon resource contention. The bottommost

layer is a self-organizing overlay network called Niche that connects all ma-
chines/resources in the VO. Niche is based on a DHT, and includes a pub-
lish/subscribe service. The middle layer, the overlay services are the focus of
this paper. They provide VO management services such as discovery, resource
monitoring, member monitoring, and deployment of components.

2.1 Management Logic

Our approach to self-management for dynamic VOs is the architecture-based
control one and based on earlier work on the Fractal component model and the
Jade management system [6]. Our system has one or more manager components
that are continuously monitoring (through sensors) and controlling (via actu-
ators) the VO in a feedback loop in accordance with high-level policies/goals
and system administration input. Self-management includes self-healing, self-
tuning, self-configuration, and self-protection.

The control approach of management distinguishing between three aspects
of management:

Sensing: the ability to sense or observe the state of system and
system elements. In general observation may be active (triggered by the
observer) or passive (triggered by the element).

Actuation: the ability to control and affect the system elements.
Decision: the logic that given knowledge of the system elements (provided
by sensing) decides on actions (done by actuation) to ensure proper operation
of the system. This ranges from simple rules to sophisticated AI techniques.

An architecture description language (ADL) is used to specify declaratively the
initial deployment and simple self-configuration and self-healing behaviours of
the system. Architectures are specified in terms of components and bindings.
Component descriptions include requirements and preferences for resources
necessary for deployment of the component. Component descriptions state
also component properties crucial for management logic, such as whether the
component’s state can be extracted into a data structure.

Other self-* behaviours are specified in terms of events and handlers and
abstractions thereof. Events reflect status changes in the VO, such as availability
of resources, and status changes of application components, such as failures.
Event handlers evaluate the status of the application and the environment and
can replace, add and remove application components and bindings.

The high-level ADL descriptions are compiled into the low-level management
logic assembler that utilizes the VO-management overlay services. While the
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Figure 1. System Architecture and the Use Case.

ADL descriptions refer to architecture-level notions, the assembler code works
with mutable references to low-level entities such as resource and component
handlers, entity and VO status watchers, and stateful event handlers.

2.2 Overlay Services

The overlay services are primarily sensor and actuation services (SA in
Figure 1). They also provide the infrastructure for delegation of management
logic. All nodes in the system are known to the SA services and are part of the
same overlay. When nodes enter or leave the system they join/leave the overlay.
When resources join/leave the system they report this to their local overlay
proxy, an action that may lead to a management action as some management
rule is triggered. Resources are also monitored for failures. An actuating
command such as deploying a component on a given resource is issued on a
management node and will eventually reach a correct managed node, where the
deployment is triggered using the managed node API.

The figure on the left shows the system architecture at management nodes.
The management logic senses and actuates through the three overlay services
through well-specified management APIs.

1. Resource sensor and actuator service
2. Component/service sensor and actuator service
3. Member sensor and actuator service
The three services are reflected in three front-end subsystems that perform

only a small amount of computation, packaging and bookkeeping. Communica-
tion with other nodes takes place exclusively in the Niche layer.
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The figure on the right shows the system architecture at managed nodes.
The Management Proxy component interacts with the three overlay services
through the services’ managed node API interfaces. The proxy interacts with
resources and components allocated/located on the local machine on behalf of
the VO. The interface between the management proxy and the overlay services
is used in particular for 1) notifications of resources joining and leaving the
VO as the owning members withdraws and add resources to the VO and 2)
components communicating via bindings with other components currently
residing on remote nodes. A physical node may be both manager and managed.

3. Niche

Overlay services described in this paper exploit the Distributed K-ary System
(DKS) [1, 3] middleware and its extension called Niche. DKS has a circular
identifier space, similarly to Chord [16]. Each node is responsible for Ids in the
interval between its own Id and the Id of its predecessor. A message sent to a
DKS Id is received by the node responsible for that Id. DKS provides broadcast
and multicast [2, 8]. DKS allows to build a data storage layer on top of it, where
every DKS node keeps data items with Ids it is responsible for.

DKS self-organizes itself as nodes join, leave and fail. DKS overlay can
notify the data storage layer about changes of responsibility of nodes, so that the
nodes can transfer the data items accordingly. Symmetric replication [10] can
be used to distribute replicas among DKS nodes, enabling concurrent requests
improving efficiency and fault-tolerance.

Niche extends the DKS and provides in particular the set of network refer-

ences abstraction, SNR hereafter. A SNR keeps a set of references to abstract
entities. Individual references in a SNR can be accessed by their SNR-specific
Ids. References to entities can be updated. SNR assumes that clients that
receive out-of-date references as a result of a concurrent read operation can
recognize the problem. For example, if the entity represents a component that
is relocated to another node, an attempt to access the previous location of the
component will result with an out-of-date reference error. Concurrent
reads and updates can be also controlled with a conditional update operation
that proceeds only if the reference supplied as an additional parameter is equal
to the reference currently held in the SNR.

A SNR also monitors the status of its entities and can notify clients that are
subscribed to entity status updates. SNR entities can communicate their status
to SNR, either by status polling by the SNR or by asynchronous messages
sent to SNR. SNR failure monitoring of resources is polling-based, using the
existing DKS functionality.

SNRs are implemented as items in a data storage layer atop of DKS. Each
SNR set element contains the reference Id and the reference itself. A SNR
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contains also a possibly empty set of references to Niche entities that are
subscribed for reference status updates. This set of subscriptions is shared by
all references in the SNR. SNRs are stored on Niche nodes responsible for their
set Ids. SNRs are reliable and scalable using symmetric replication: whenever a
DKS node discovers that it became responsible for a SNR it has no data for, it
contacts one of other SNR replicas.

4. Overlay Services

The elements of the management logic assembler can be divided into cate-
gories based on their place in the management feedback loop.
Events: Sensing is realized through events.
Sensor installation: This instruments the sensing, which can be seen as publish
directives. Discovery operations and watchers belong here, where management
asks the overlay services to find resources (active sensing) or monitor specific
entities (passive sensing), respectively. Information on entities will only be
available if there are watchers installed.
Triggers: This is an actuating part of the management logic whereby a com-
mand is sent to a specific entity or groups of entities.
Activation of event handlers: Activating an event handler may be seen as a
subscription. Event handlers can be created and/or stopped. For one event there
may be more than one event handler, which may be triggered in arbitrary order.

4.1 Management API

In the following section the management API is described in an abstract
form. We describe the more important functions of the resource and component
overlay services and all operations used in the use case section.

We use VO-wide identifiers for resources, components, watchers, bindings
and groups. Futures are used to simplify data-flow dependencies. When created,
a future represents an unknown value which will be instantiated, which allows
waiting for that value. For most futures a failure indication is a possible value.
Futures are identified by a capital F in the variable name.

Sensor Installation wid:discoverResource(req, compare, tCompare, currentRes)

widF:watchComponent(cid, compParam, compare, tCompare)

widF:watchResource(rid, resParam, compare, tCompare)

stopWatcher(wid)

These instructions install sensors which will continuously report about re-
sources matching given requirements or component and resource changes spec-
ified by parameters. For a sensor to report a change, the change has to be
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significant, as calculated by the given compare-function, and a threshold func-
tion tCompare that determines if a resource is sufficiently better than curRes.

Triggers aridF:allocate(rid, specification)

boolF:deallocate(arid)
cidF:deploy(component, arid)

fcidF:passivate(cidA)

fcidF:checkpoint(cidA)

boolF:start(cid)
gcidF:group(listOfComponentIds)

boolF:addToGroup(gid, cid)

bidF:bind(cid, gcid, bindDescSource, bindDescDestination, type)

boolF:unbind(bid)
rid:oneShotResourceDiscover(req, compare)

The deploy trigger is overloaded. The argument can be code, a checkpoint,
url, etc. The data associated with passivation is stored in Niche under fcidF.
Bindings are assumed to be unidirectional and asynchronous. If needed, binding
descriptions for the sending and delivering side give additional information to
connect the components.

Events resourceReport(wid, oldState, newState)

componentReport(wid, componentParam, oldValue, newValue)

discoveryReport(wid, rid, resourceDescription)

Resource and component report correspond to watch subscriptions, while
discovery report corresponds to discoverResource subscriptions. They are
generated if the change has triggered the initially given threshold function.

Event Handlers upon event eventName(wid, es) with <attributes> do

activateEventHandler(rule, wid, initAttributes)
passivateEventHandler(rule, wid)

The event handler is triggered by an exact match on both the event name, and
the value of the id, wid. Es represents parameters given in the event, attributes
represents parameters given when instantiating the event handler.

4.2 Managed Node Side API

The managed node side of the API works with local ids. The sensor and
actuator services will do the conversion between local and global ids.

Downcalls, Initiated by Management Proxy Layer resourceJoin(lrid, description)

resourceLeave(lrid)
resourceChange(lrid)

componentChange(lcid, description)

send(lbid, Object)

The information generated by resource join can trigger resourceReport(s)
or be found through discoverResource calls. The leave and change calls
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generates resource and component reports, if there are subscribers. Send is used
when component make calls on established bindings.

Upcalls Initiated by Overlay Services result:allocate(lrid, description)

result:deallocate(lrid)
lcid:deploy(lrid, componentDescription)

bool:undeploy(lcid)

data:passivate(lcid)

lbid:bind(lcid, description)

bool:unbind(lbid)
lwid:watchComponent(lcid, eventDescriptions)

state:pollComponentState(lcid)

deliver(lbid, Object)

The allocate operation might consume the entire resource or just a part, in
which case a new rid is given for the allocated part, while the old rid refers
to the free remainder. The deallocate operation might return an instruction to
merge two chunks of a previously split resource, or they might remain split.

5. Use Case

We demonstrate the use of the management overlay services with an applica-
tion that consists of a single master component and multiple worker components.
The master divides a computational task into independent subtasks, delivers
each subtask to a random worker for processing taking advantage of the any

type of bindings, and collects and collates the results.

5.1 ADL Specification
definition MasterWorkerApplication
component Master
content = MasterImpl;
resourceSpecs requirements = "OS=Linux and MemorySize>4GB", preferences = "MemorySize";
componentAttributes stateful,serializeable;

component Workers
content = WorkerImpl;
cardinality = 3;
resourceSpecs requirements = "CPUSpeed>3GHz", preferences = "CPUSpeed";
componentAttributes stateless;

binding B1
client = Master.OutputInterface; server = Worker.InputInterface; type = any

A tool maps the ADL description to manager assembly code. This code
contains invocations to the overlay services via the management API, as shown
in Section 5.2. The binding element of type any causes the invocations to be
delivered to a single, random group member.

The management code for self-configuration and self-healing does not change
the application’s architecture, and can therefore be generated from the same
ADL specification automatically (see for example Section 5.3). For the master
component, the componentAttributes field states that the component is
stateful and therefore its state must be moved when the component is relocated,
and that it is serializable meaning that the state can be actually saved into a data
structure, as needed by e.g. the checkpointing code.
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Self-tuning involves adjusting the number of workers when their load changes.
The application ADL contains the policy self-tuning-workers describing
this behaviour. The ComponentStateChange event specification causes setting
up a watcher for a specific parameter of a source component using a given
threshold value. The handler ManageGroupWithLimits changes the number
of components in the Workers group such that the load moves into the region
specified by low and high parameters.

policy self-tuning-workers
event = ComponentStateChange(source=Workers, componentParam="Load", threshold="100")
handler = ManageGroupWithLimits(target=Workers, low="1000", high="2000")

5.2 Initial Deployment

The following sections of management assembler code are produced au-
tomatically from the ADL descriptions. Waits are implicit; futures used as
input parameters block calls until instantiated. Error-handling is omitted. The
execution of the code is illustrated in Figure 1.

ridA:oneShotResourceDiscover(reqA, compare)
% + similarly for 3 B resources => ridB[1-3]
desA := specifications(preferenceA, ridA)
% specifications produces a description of how much of the resource is to be allocated
aridA:allocate(ridA, desA)
cidA:deploy(A, aridA)
% + similarly for 3 B components => cidB[1-3], initialNumberOfComponents = 3
gid:group([cidB[1],cidB[2],cidB[3]])
bid:bind(cidA,gid, BDesA,BDesB, one-to-any-binding)
widAR:watchResource(aridA, [used->fail, used->leaving], any, any)
% ’any’ indicates that all changes of declared types should be reported, no filtering
activateEventHandler(self-config-leave, widAR, [bid, cidA, aridA, gid])
widA:discoverResource(reqA, compare, tCompare, ridA)
activateEventHandler(self-config-join, widA, [bid, cidA, aridA, gid]
% do periodic check-pointing to enable self-healing for A:
timeGenerate(checkPoint(cidA), timeInterval)
activateEventHandler(checkpointing, id)
activateEventHandler(self-healing, widAR, [...])
activateEventHandler(self-tuning, widB[X], [...])

5.3 Self-* Rules

The rules are active until stopped, so they may be fired many times. Parameter
names are left out when they are understandable from the context.

Self-Configuration

upon event discoveryReport(wid, newrid, RDes) with <bid, cidA, aridA, gid, preferencesA> do
% the system reports a better resource match - newrid - for component A, move it there
boolF:unbind(bid)
fcid:passivate(cidA)
boolF:deallocate(aridA)
aridA:allocate(rid, specification(prefA, RDes))
cidA:deploy(pcid, aridA)
bid:bind(cidA, gid)

upon event resourceReport(widA, from, to) with <bid, cidA, aridA, gid, ...> do
if from==used && to==leaving then % resource is leaving, find new & move component there
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newRidA:oneShotResourceDiscover(reqA, compare)
boolF:unbind(bid)
pcid:passivate(cidA)
boolF:deallocate(aridA)
aridA:allocate(newRidA, specification(preferencesA, newRidA))
cidA:deploy(pcid, aridA)
bid:bind(cidA, gid)

Note that the aridA and other attributes are reset at rule termination so the
rule can be fired again.

Self-healing

upon event resourceReport(widA, from, to) with <...> do
if from==used && to==failed then
% resource failed, find new & restore checkpointed component there
newRidA:oneShotResourceDiscover(reqA, compare)
aridA:allocate(newRidA, specification(prefA, desc))
cidA:deploy(fcidA, aridA) % "frozen"cidA from periodic checkpoint
bid:bind(cidA, gid)

Self-Tuning

upon event componentReport(widB[X], load, oldLoad, newLoad) with <gid, ...> do
if loadMeasure(load[1..NoB]) > HighLimit then
% load is high, deploy one more B-component
newRidB:oneShotResourceDiscover(reqB, compare)
newAridB:allocate(newRidB, specifications(prefB, desc)
newCidB:deploy(B, newAridB)
addToGroup(newCidB, gid)
noB:=noB+1
update(load[])

elseif loadMeasure(load[1..NoB]) < LowLimit then
if noB > initialNumberOfComponents then % load is low, one B-component can be removed
deallocate(lowestLoad(widB[]))
noB:=noB-1
update(load[])

6. Related Work

Niche builds on a state-of-the-art overlay, DKS. A good survey of overlays
and comparisons with DKS can be found in [9].

Several P2P-based publish/subscribe systems have been developed, for both
structured e.g. [7, 17] and unstructured e.g. [12] P2P networks. To our best
knowledge, structured pub/sub systems do not provide a robust and scalable
event-notification mechanism (with high delivery guarantees) that could tolerate
churn in highly dynamic Grids. However some of the resent unstructured
pub/sub systems [4–5] are scalable and can handle churn.

There is a considerable industrial and academic interest in self-* systems.
Some approaches, e.g. [14, 11], rely on P2P to support some of self-* aspects
in Grid. Our work aims at utilizing P2P to provide support for all self-* aspects
in Grid component-based applications.

The AutoMate project [15] proposes the Accord [13] programming frame-
work to deal with challenges of dynamism, scale, heterogeneity and uncertainty
in Grid environments. The Accord’s approach for self-management is similar
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to our approach. Accord is based on the concept of autonomic element that
represents self-manageable entities. Self-management is guided by behaviour
and interaction rules. The Accord framework provides support for run-time
composition of elements and run-time injection of rules. We believe AutoMate’s
self-* rules can be implemented using our framework. Our work, however, does
not stipulate a specific programming model and can be used to provide self-*
management support for legacy applications.

The benefits of overlay-based middleware to support complex, heteroge-
neous, self-configuring Grid applications has been recognized in GridKit [11].
GridKit provides resource discovery and management services, and interaction
services. However, GridKit does not provide specific services for component
management, and did not address all of the self-* issues.

7. Discussion and Conclusions

In our architecture the overlay services form the middle layer of an infras-
tructure for the management of dynamic VOs. They are responsible for all
sensing and actuation necessary for self-management of VO applications. As
the overlay services are based on a DHT, we have been leveraging results in the
area, and been able to provide services that are both self-managing internally
and robust. The fact that the overlay services are self-managing simplifies
making the robust VO management.

Dynamic VOs are characterized by high rates of churn so that there is risk of
overwhelming the management with a flood of status information and the need
to take corrective actions. This might exceed bandwidth, storage and computing
limitations and complicate dealing with management nodes’ failures. This is
ameliorated by the following properties of the overlay services. First, the overlay
services are available to all nodes in the VO and therefore support replication
of management nodes. Second, overlay services can accommodate sensing
abstractions that can aggregate churn events and therefore hide them from other
elements of the management. Handling abstractions inside the overlay make for
fewer messages arriving at the management node, fewer messages overall in
the system, and lower latencies. Third, overlay services support intelligent and
dynamic delegation of management logic between nodes in the VO. Placing
management elements near or together with the components themselves can
optimize performance and overhead of self-management, and simplify making
the self-management robust on its own.

This is work in progress, to date a number of overlay service functions have
been designed, and some of these have been implemented.
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Abstract In the last few years, high-availability on internet services has become a main
goal for the academia and industry. We all know how complex and heterogeneous
Internet service systems are and how sensitive to suffer from transient failures
or even crashes also. Because developing systems that are guaranteed to never
crash and never suffer transient or intermittent failures seems an impractical and
unfeasible business, there is a need to develop mechanisms that can suffer crashes
and transient failures as if they were a clean shutdown. Behind this idea, the
creators of the crash-only software concept proposed a new design strategy in
order to get crash-safe and fast recovery systems by defining a list of laws which
are needed in order to achieve that goal. However, their proposals are focused on
new systems design. For this reason, we will discuss how to develop crash-safe
and masked fast self-recovery legacy systems following the ideas behind the
crash-only software concept. In our work, we have focused on legacy application
servers because they are a more sensitive piece of the internet services’ big puzzle.

Keywords: crash-only software, legacy software, self-recovery, self-healing, automatic re-
covery
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1. Introduction

High-availability has become one of the main success characteristics for
every company engaged in e-business and e-commerce since every company
wants their internet services running 24x7 to maximize their revenue. For
all internet service companies, high-availability is of paramount importance
because unavailability time means potential revenue losses. In recent history,
there have been famous internet service outages, resulting in big revenue losses
and a bad image for service companies’ owners. In general terms, [1] calculates
that the cost of downtime per hour can go from 100k for online stores up to 6
million dollars for online brokerage services. One of the most important cases
occurred in April 1999, when e-Bay suffered a 24-hours outage. In that time,
it was calculated that e-Bay lost around 5 billion dollars in revenue and stock
value [4]. This type of failures and similar outages, like the 15 minutes Goggle
Outage in 2005 can also affect the customer loyalty and investor confidence [5],
resulting in a potential loss of revenue.

Unfortunately, system outages and application failures do occur, provoking
crashes.

We can classify the bugs in two big sets of them: permanent failures and
transient failures.

The first subset refers to bugs that can be solved in development processes
because they’re easy to reproduce. However, the second type of failures, also
known as Heisenbugs [3] are difficult to fix because they’re difficult to repro-
duce because they depend on the timing of external events and often the best
way to skip them is to simply restart the application, the application server or
even the whole physical or virtual machine.

We have focused on this second type of bug.
Internet services are complex and dynamic environments where there are

lots of components interacting with each other. This type of environments are
sensitive to transient failures; however, a simple restart to solve possible failures
and crashes may not be enough to solve them and indeed, if we apply blind
restarts, internet services can suffer application data inconsistency problems.
This happens because while we restart the internet service, the volatile state
of user sessions needed for future interactions between the application and the
user to achieve a successful communication is lost, also displaying the restart
process to end users as a failure or a crash.

As it seems that it is unfeasible to build systems that are guaranteed to
never crash or suffer transient failures, G. Candea and A. Fox proposed the
crash-only software concept [7]. The crash-only software is based on the
idea of designing software systems that handle failures by simply restarting
them without attempting any sophisticated recovery. Since, some authors have
proposed the idea of developing new Internet services using the concept of
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crash-only software. The crash-only concept can be seen like a generalization
of the transaction model taken from the data storage world. The crash-only
system failures have similar effects over the data storage systems. However,
what happens with the recently designed and deployed internet services, usually
made-up by cooperative legacy servers?

In this paper, we discuss the possibility to migrate the crash-only software
concept to these legacy servers for internet services. We focus on application
servers because traditionally, these servers have the business logical of the
applications and are more sensitive to the transient failures or potential crashes.

As an example, we expose the classical online flight ticket store. We have a
multi-tier application environment made-up by one web server for static web
pages, an application server for business logical and a database server for storing
all ticket flight information.

We can define the session in this environment as the process in between
the user logs-in and finally, logs-out. During this process the user can search
for flights, add some of them to his/her shopping basket and pay for them. If
there was a crash during the session process, the more sensitive point of the
multi-tier application would be the application server, because the web server
only manages static information and database servers have their traditional
after crash recovery systems. The application servers have the responsibility to
manage the session state. This session state is needed for the session’s success
because the session state contains information useful to the session’s subsequent
states. For this reason, if there was a crash in a legacy application server, a
simple and blind restart could be dangerous to the consistency of the business
logic state.

Due to the crash-only constraints we restrict our proposal to application
servers with external session state storage, which meets crash-only laws like
SSM [8] or Postgres database system [15].

This paper’s main goal is to migrate the ideas proposed by authors of the
crash-only concept to the current legacy application servers and put them to
practice in order to obtain a "crash-safe" and "fast" recovery system.

The second goal of our proposal is to hide any possible crash from the end-
users improving the crash-only software concept which achieves crash-safe and
fast recovery systems although it doesn’t avoid the occasional unavailability
time, as it was shown through the Microreboot technique [6]. The rest of
the paper follows as: Section 2 presents the crash-only software properties.
Section 3 discusses the viability of crash-only software characteristics on legacy
application servers’ environments. Section 4 presents our proposal architecture
to achieve our two principal goals and section. Section 5 concludes this paper.
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2. Crash-only Software

The crash-only concept is based on the idea that all systems can suffer
transient failures and crashes thus it’d be useful to develop systems that could
overcome a potential crash or transient failure. Furthermore, normally the
system crash recovery time is lower than the time needed to apply a clean
reboot using the tools provided by the application itself. Table 1 illustrates this
reasoning.

System Clean Reboot Crash Reboot

RedHat 8 (with ext3fs) 104 sec 75 sec
JBoss 3.0 application server 47 sec 39 sec
Windows XP 61 sec 48 sec

Table 1. Table obtained from [7]

The reason for this phenomenon is the desire to improve the system per-
formance. The systems usually store potential non-volatile information on
volatile devices, like RAM, to be faster and obtain higher performance. For this
reason, before a system can be rebooted, all this information has to be saved on
non-volatile devices like hard disks to maintain data consistency. However, in
the case of a crash reboot all this information is lost and potential inconsistency
state may result after reboot.

Based on these potential problems, crash-only software is software where
a crash behaves as a clean reboot. Every crash-only system has to be made of
crash-only components and every crash-only component has only one way to
stop - by crashing the component- and only one way to start the component:
applying a recovery process. To obtain crash-only components, authors defined
five properties that the component has to include:

(a). All important non-volatile state is managed by dedicated state stores. The
application becomes a stateless client of the session state stores, which
helps and simplifies the recovery process after a crash. Of course, this
session state store has to be crash-only, otherwise the problem has just
moved down to the other place.

(b). Components have externally enforced boundaries. All components have
to be isolated from the rest of the components to avoid that one faulty
component may provoke another fault on another component. There
are different and potential ways to isolate components. One of the most
successful ways for isolating components which has become popular in
the last few years is virtualization [16].

(c). All interactions between components have a timeout. Any communication
between components has to have a timeout. If no response is received
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after that time, the caller can assume that the callee is failing and the
caller can start a crash and recovery process for the component failing.

(d). All resources are leased. The resources cannot be coupled up indefinitely
thus it is necessary to either guarantee the resources be free after a limited
time or the component using the resources crashes.

(e). Requests are entirely self-describing. It is needed that all requests are
entirely self-describing to make the recovery process easier. After a
crash, the system can continue from where the previous instance left
off. It is necessary to know the time to live (TTL) of the request and the
indempotency property.

Trying to describe in fine detail all philosophy of Crash-only software in
this paper would be out of scope. In order to obtain more information, we
recommend you visit the ROC project [2] and the website [17] and other
authors’ papers around this concept.

3. Crash-only and masking failure Architecture for
Legacy Application Servers

Our architecture is focused on a determinate set of application servers: ap-
plication servers with external session state storage. The reason is because we
cannot force an application server to manage their internal session objects to
external storage without changing the code. We want to propose a solution
which avoids modifying the legacy application server code because this can be
a titanic work or even impossible if the software is also closed.

The architecture is made-up by three main components: the Requests Handler
(RH), the Storage Management Proxy (SMP) and the Recovery Manager (RM)
as shown in figure 1.

Figure 1. Basic Architecture diagram
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The Requests Handler has the responsibility to capture all HTTP requests
that are sent to the application server from a potential end-user or a web server.
Two queues and one requests manager form the RH. There is one requests
queue, a responses queue, and a requests manager to manage and synchronize
them.

When a new request is sent to the application server, RH handles the request
and copies the request to the requests queue and then the request is redirected
to the application server without any modification. When the application server
sends a response to the end-user or web server, the Requests Handler captures
the response and copies the response to the response queue and redirects the
response without changes to the end-user.

To achieve this behavior the Requests Handler has to work in the same
network domain as the application server and has to be configured to work in
a promiscuous mode, and by using the application server IP it can capture all
the application server requests and discard all not relevant requests (e.g. non-
HTTP requests). Capturing the response is quite more complicated because, the
Request Manager has to save all IP sources from all requests without response
in the requests queue and any packet sent by the application server to one of the
IP’s from the requests queues will be captured. When the response is captured,
the request associated to the response is removed from the queue. We are based
on the idea that the requests and responses can be joined if we understand that
the requests from one end-user are sequential and the responses too, for this
reason, using the source IP of the request and the destination IP of the response
can be enough to join one response with its request.

The Requests Handler has more important tasks other than only preserving
a copy to know what in-flight requests are there in the application server. It
has also the responsibility of detecting potential failures (transient failures and
crashes).

Based on the idea proposed by [7] and [11], every time that one request is sent
to the application server from the Requests Handler, a timeout is activated. If
the request timeout finishes without response, the Requests Handler tries to ping
over the application server and if there isn’t an answer, the Requests Handler
assumes that the application server has crashed and it starts a recovery action.
Furthermore, to detect fine-grain potential failures like application failures, the
Requests Handler reads the every response content to try to detect potential
transient or intermittent failures (e.g. any HTTP 400 error) and notifies this
fact to the developers or administrators and applies a recovery action discarding
the response message failure to avoid the potential concerns to the end-user.
The Storage Management Proxy (SMP) is based on the idea proposed in [14].
[14]proposes a new ODBC for communications with data base servers which
understands all SQL statements as a transaction and modifies the statements
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syntax to achieve a successful behavior. This ODBC is integrated in Phoenix
APP [10], to achieve a system with crash-safe processes.

We have simplified the idea proposed in [14]. Our system only stores in-
formation of the communications between the application server and any data
storage device (database servers or session state storage). The information ob-
tained from these communications will be used only in the recovery process and
during a correct behavior of the application server. We can say that SMP is only
a logging system that saves all requests and responses’ information. If a crash
happens during a transaction process in the database server, the transaction will
rollback and the SMP will write this event only to keep track of what happened
during this interaction between the application server and the database server.
Finally, the Recovery manager has the responsibility to coordinate the recovery
process. To define the recovery process, we have designed an architecture and
a process to avoid the potential problems of the recovery process described in
[13]: exactly-once execution, (where the latter means, no output to the user
is duplicated to avoid confusion), the user provides input only once (to avoid
user irritation) and the user attempt is carried out exactly once. If the Requests
Handler detects a failure a signal is triggered to the Recovery manager to start
a recovery process. First, the RM notifies this situation to the RH and SMP.
When the RH receives the notification, it stops to redirect requests and redirect
responses to and from the application server and it only receives requests from
end-users. At the same time, the SMP avoids all communications between
the application server and the data storages. After these both processes are
concluded, the RM recovers (crash reboot) the application server (e.g. kill -9
pid-process) and restarts the application server waiting for a new application
server instance. When the new instance is running, the RM notifies the fact
to the RH and SMP. The RH redirects all requests without response (in-flight
requests) to the new instance of the application server again, so the user doesn’t
need to provide the input again. If at any time, the RH receives a response
without request associated to it, the response is discarded to avoid potential
duplicates to the user in order to avoid confusion.

At the same time the SMP is monitoring the communications between the
application server and avoiding potential duplicated database or session object
modifications. When SMP detects a duplicated communication, the packet
is not redirect to the storage if the performance of this communication was
successful, otherwise the communication is redirected. On the other hand, if
the communication wasn’t successful, we use the SMP response saved to build
a new (old) response and send it to the application server as if it’d been stored.
Thanks to this control of the duplicated communications of the SMP we avoid
potential problems presented in [13].

The idea of this coordination between RH and SMP using the RM is to avoid
the potential crash hazards presented in [11–12]. In these papers, the authors
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present an architecture based on interact contracts. These contracts are thought
to apply safe-recovery mechanisms after a crash, replaying all requests without
response before the crash and avoid uncomfortable behaviors of the application
servers. However, authors present a solution that has an important constraint
for all components: even internal components have to keep the contracts to
maintain the coherence of the architecture. We have used the idea presented in
these papers to present the architecture to achieve crash-only software legacy
application server and mask the failure to the user.

4. How our architecture achieves the goals?

In this paper, we propose a new architecture based on two proposals to
achieve a crash-safe and fast recovery. Our goals proposed at the beginning of
this paper were to migrate the crash-only software concept to achieve a legacy
application server with the same characteristics as a crash-only designed system.
Moreover, we proposed the improvement with regards to results presented in
[6] where when using the crash-only concept, the system had an unavailability
time of 78 missed requests during a microreboot process based on crash-only
software. We want to design an environment to avoid these missed requests,
reducing to zero downtime if it is possible. We understand a legacy application
server as an indivisible component to make possible the crash-only concept
migration, because the crash-only software is made-up by crash-only subcom-
ponents. Based on this premise, it is easy to understand the reasoning of how
our architecture preserves the properties of the crash-only software. As we have
mentioned, we have restricted our study to the "stateless" application servers:
The session state is preserved in external session state storages, accomplishing
the first property (a). The architecture alone cannot achieve the second property
(b), though we can use virtual machines (VM) to run the legacy application
server and the rest of our proposal’s components: one VM for each component
to guarantee the isolation between components. The third property (c) is guar-
anteed by the RH, the SMP components and the behavior of the application
servers. All communications have a timeout configured at least at OSI 4-layer
(e.g. TCP/IP protocols). The fourth property is more difficult to accomplish.
Working with legacy application servers, this property has to be delegated to
the Operating system, which guarantees that all resources are leased. Finally,
the HTTP requests, the traditional type of message for application servers,
which are completely self-described. The secondary goal is preserved thanks
to the queues inside the Requests Handler. During the crash and the recovery
process, the application server is unavailable for the end-users or third appli-
cations. However, our Requests Handler continues capturing requests for the
application server like a proxy and when the recovery process finishes, these
requests waiting on the queue will be redirected to the application server like
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nothing happened. This process can mask the crash for the end-users in most
cases like a previous work [9] where the solution masked potential service
degradation and reboot process. Our proposal also avoids error messages if
it is possible, because the RH parses the requests to try to detect fine-grain
application failures or the application server failures (e.g. 400 and 500 HTTP
errors) avoiding that end-users may observe neither these transient failures nor
temporary system unavailability. In our proposal we get crash-safe self-recovery
legacy application servers and even our solution offers a "fast" recovery process.
We can confirm that the Requests Handler simulates a non-stop service which
is the maximum speed of the recovery, and though the end-users will suffer
response delays during the recovery process, we think that that penalty delay is
proportional to the advantages of the proposal.

5. Conclusions

We have presented an architecture to migrate the advantages of the crash-only
software concept to the legacy application servers. Furthermore, we have to
improve the crash-only designs potential by introducing the idea behind the
interact contracts presented in the Phoenix project [10] in order to achieve
a successful and useful self-recovery process without modifying neither the
application server code nor the application code. Nevertheless, our proposal has
to have all application’ and all application server’ information to modify the
behavior of the Requests Handler and the Storage Manager Proxy to correctly
capture the requests and responses and use the correct network protocol (e.g.
TCP/IP, HTTP, SOAP or others).

Our solution introduces a potential time-to-service delay during the recovery
process. We could reduce this time if we introduce a hot-standby application
server waiting to substitute the failing server. This idea is proposed in [9] for
different environments with promising results.

Acknowledgments

This research work is supported by the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265) and
the Ministry of Science and Technology of Spain and the European Union
(FEDER funds) under contract TIN2004-07739-C02-01. We thank Ceila Hi-
dalgo Sánchez for her contribution during the review process.

References

[1] J.Hennessy, D.Patterson. Computer Architecture: A Quantitative Approach, Morgan &
Kaufmann Publishers, 2002.

[2] D. Patterson, et. al. Recovery Oriented Computing (ROC): Motivation, Definition, Tech-

niques and Case Studies., Technical Report UCB CSD-02-1175, U.C. Berkeley, March



174 MAKING GRIDS WORK

2002.

[3] K. Vaidyanathan and K.S. Trivedi. Extended Classification of Software Faults based

on Aging, In Fast Abstracts, Proc. of the IEEE IntŠl Symp. on Software Reliability
Engineering, Hong Kong, November 2001.

[4] D. Scott. Operation Zero Downtime A Gartner Group report, Donna Scott, 2000

[5] Chet Dembeck. Yahoo cashes in on Ebay’s outage, E-commerce Times, June 18, 1999.
[web] http://www.ecommercetimes.com/perl/story/545.html

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, A. Fox. A Microreboot - A Technique

for Cheap Recovery Proc. 6th Symp. on Operating Systems Design and Implementation
(OSDI), Dec. 2004.

[7] G.Candea, A.Fox. Crash-only Software, Proc. 9th Workshop on Hot Topics in Operating
Systems, Germany, 2001

[8] B. Ling and A. Fox. A self-tuning, self-protecting, selfhealing session state management

layer, In Proc. 5th Int. Workshop on Active Middleware Services, Seattle, WA, 2003.

[9] Luis Silva, Javier Alonso, Paulo Silva, Jordi Torres and Artur Andrzejak. Using Virtu-

alization to Improve Software Rejuvenation The 6th IEEE International Symposium on
Network Computing and Applications (IEEE NCA07), 12 - 14 July 2007,Cambridge, MA
USA

[10] Roger S. Barga. Phoenix Application Recovery Project IEEE Data Engineering Bulletin,
2002.

[11] Barga, R., Lomet, D., Paparizos, S., Yu, H., and Chandrasekaran, S. Persistent applications

via automatic recovery, In Proceedings of the 17th International Database Engineering
and Applications Symposium, Hong Kong, China, July 2003.

[12] R. Barga, D. Lomet, G. Shegalov, G. Weikum. Recovery Guarantees for Internet Appli-

cations, ACM Transactions on Internet Technology (TOIT), vol. 4, no. 3, pp. 289-328,
2004.

[13] R. Barga, D. Lomet, G. Shegalov, G. Weikum. Recovery Guarantees for General Multi-tier

Applications, Proc. of the 18th Int. Conf. on Data Engineering, p. 543, Feb. 26-March,
2002.

[14] Roger S. Barga , David B. Lomet. Measuring and Optimizing a System for Persistent

Database Sessions, Proc, of the 17th Int. Conf. on Data Engineering, p.21-30, April 02-06,
2001.

[15] M. Stonebraker. The design of the Postgres storage system, Proc. 13th Conf. on Very Large
Databases, Brighton, England, 1987.

[16] R. Figueiredo, P. Dinda, J. Fortes. Resource Virtualization Renaissance. IEEE Computer,
38(5), pp. 28-69, May 2005

[17] [website] http://roc.cs.berkeley.edu/



BOUNDED SITE FAILURES: AN APPROACH TO

UNRELIABLE GRID ENVIRONMENTS ∗

Joaquim Gabarro†, Alina Garcia‡
Universitat Polit„ecnica de Catalunya

ALBCOM Research Group

Edifici Ω, Campus Nord Jordi Girona, 1-3, Barcelona 08034, Spain

gabarro@lsi.upc.edu

Maurice Clint, Peter Kilpatrick, Alan Stewart
School of Computer Science

The Queen’s University of Belfast

Belfast BT7 1NN, Northern Ireland

m.clint@qub.ac.uk

Abstract The abstract behaviour of a grid application management system can be modelled
as an Orc expression in which sites are called to perform sub-computations.
An Orc expression specifies how a set of site calls are to be orchestrated so as
to realise some overall desired computation. In this paper evaluations of Orc
expressions in untrusted environments are analysed by means of game theory. The
set of sites participating in an orchestration is partitioned into two distinct groups.
Sites belonging to the first group are called angels: these may fail but when they
do they try to minimize damage to the application. Sites belonging to the other
group are called daemons: when a daemon fails it tries to maximise damage
to the application. Neither angels nor daemons can fail excessively because
the number of failures, in both cases, is bounded. When angels and daemons
act simultaneously a competitive situation arises that can be represented by a
so-called angel–daemon game. This game is used to model realistic situations
lying between over-optimism and over-pessimism.

Keywords: fault tolerance, bounded site failures, strategic games, nash equilibria.

∗This research is carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).
†Partially supported by FET pro-active Integrated Project 15964 (AEOLUS) and by Spanish projects
TIN2005-09198-C02-02 (ASCE) and MEC-TIN2005-25859-E. This work has been done in part during a
CoreGRID Exchange Program CR38UPC-CR21QUB & CR35UNIPI.
‡Supported by a FPI Spanish grant BES-2003-2361.



176 MAKING GRIDS WORK

1. Introduction

A Grid application management system calls sites in order to perform sub-
computations. Typically, it is over-optimistic to assume that all site calls made
during execution of a grid application will work correctly. While, to a certain
extent, such failure may be dealt with by employing time-outs and corrective
action, such defensive programming may not always be easy and in some cases
not possible. There may be times when the user accepts the possibility of failure,
but would like to have an estimate of the likelihood of success. Such an analysis
can be obtained by using Orc [4] to describe the orchestration of sites in a
grid application [10] and by estimating, using probability theory, the expected
number of results that will be published by an expression evaluation [9]; each
site S is assumed to have a probability of failure and distinct sites are assumed
to be independent. In practice, it may be difficult to provide a meaningful
measure of site reliability and the assumption that distinct sites are independent
may be too strong. In this paper an alternative approach based on game theory
is used to analyse the behaviour of orchestrations over unreliable environments.

Grid sites are partitioned into two disjoint sets, angels A and daemons D:

Sites in A fail in such a way as to minimize damage to an application.
This kind of failure is called angelic.

Sites in D fail in such a way as to maximise damage to the application.
This kind of failure is called daemonic.

It is assumed that the number of possible failures in the sets A and D are
bounded. A and D can be viewed as players in a strategic game. If only
angels are present then the problem is a maximization one; if only daemons act
then we have a minimization problem. The interesting case lies between the
extremes, when both angels and daemons act simultaneously and a competitive
situation arises that can be represented by a so-called angel-daemon game. Here,
finding a Nash equilibrium gives a solution that may be used to model realistic
situations for unreliable grids, where the outcome is found somewhere between
over-optimism and over-pessimism.

The study of systems under failures with Nash equilibria is not new. In [3]
implementation problems involving unreliable players (who fail to act optimally)
are studied. In [5] the authors study distributed systems in which players may
exhibit Byzantine behaviour to undermine the correctness of the system. Note
that orchestrations represent control from one party’s perspective [7]. In this
sense the analysis of orchestrations is different form the analysis of distributed
systems under failures. The analysis of distributed systems is based (at least
in part) on the graph properties of the underlying network. In the case of
orchestrations we have to abstract the network (or consider it as another web or
grid service). It is this “one party perspective” that makes the following analysis
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new.

In §2 a brief overview of Orc is presented. In §3 a way of assessing the
benefits of evaluating an expression in an unreliable environment is proposed.
In §4 a means of applying game theory to analyse the outcomes of executing
orchestrations on unreliable networks is proposed. In §5 we assume that only
one player controls the situation. When the player is A the damage is minimized.
On the other hand, when the player is D the damage is maximized. These
represent the two possible extreme coordinated behaviours, one extremely good
and the other extremely bad. In this case there is no competitive activity and we
have an optimization problem. In §6 we consider a competitive case defining a
zero sum game, the so called angel-daemon game. In this game, both A and D
play simultaneously. In §7 we apply the angel-daemon game to see how a grid
manager assigns macro instructions to angelic and daemonic interpreters. In §5
we conclude and identify some open points.

2. Orc: a brief overview

A set of site calls can be orchestrated into a complex computation by means
of an Orc expression [4]. A site call either returns a result or remains silent
– silence corresponds to a site failure. The site which always fails (and is
useless) is denoted 0. Site calls can be combined by means of three composition
operations.

Sequence: P ≫ Q. For each output published by P an instance of Q is
executed. The notation P > x > Q(x) is used in situations where the
computation Q depends on the output of P .

Symmetric Parallelism: P |Q. The published output of P |Q is any inter-
leaving of the outputs of P and Q.

Asymmetric parallelism: P where x :∈ Q. Threads in P and Q are
evaluated in parallel. Some of the threads of P may be blocked by a
dependency on x. The first result published by Q is bound to x, the
remainder of Q’s evaluation is terminated and evaluation of the blocked
threads of P is resumed.

3. Value of an orchestration under reliability failures

Web and Grid environments are unreliable. Sites evolve and a user has little
(or no) control over the execution environment. Given a complex orchestra-
tion E it is unrealistic to assume that there will be no site failures when this
orchestration is executed.

Reliability assumption. Sites are unreliable and can fail. When a site fails it
remains silent and delivers no result at all. When a site does not fail it delivers
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the correct result. Any kind of byzantine behaviour is excluded. Any kind of
behaviour delivering an "approximate" result is also excluded.

Even though some sites fail, orchestration may still produce useful partial
results. For example, robust orchestrations may contain a degree of redundant
computation so that evaluations may succeed even when a number of site
failures occur. Given an orchestration E let α(E) be the set of sites that are
called in E. Let F ⊆ α(E) denote a set of sites that fail during an evaluation
of E. The behaviour of the evaluation of E in this environment is given by
replacing all occurrences of s, s ∈ F , by 0. Let ϕF (E) denote this expression.

Value assumption. The evaluation of an orchestration has value even if
some sites fail. For a particular failure set F the usefulness of the evaluation
of ϕF (E) is measured by v(ϕF (E)), the value or benefit of the orchestration
ϕF (E). The range of v should be a non-negative R. The value function v
should have the following basic properties:

v(ϕα(E)(E)) must equal 0 when all sites fail in an evaluation of E,

v(ϕF (E)) ≥ 0 for all F ⊆ α(E),

if F ⊆ F ′ ⊆ α(E) then v(ϕF (E)) ≥ v(ϕF ′(E)).

In this paper, we measure the benefit by the number of outputs that E publishes,

v(E) = numbers of outputs published by E.

An algorithmic definition of v(E), for non-recursive E, is:

v(0) = 0 , v(s) = 1 if s is a service site , v(if(b)) = if b then 1 else 0

v(E1|E2) = v(E1) + v(E2) , v(E1 ≫ E2) = v(E1) ∗ v(E2)

v(E1 where z :∈ E2) = if v(E1) ≥ 1 then v(E1) else 0

v(E) has polynomial time complexity with respect to the length of the expres-
sion E.

Example 1 Consider the following expression

E = (M1|M2) > x > [(M3|M4) > y > (M5(x) > z > M6(z) | (M7|M8)≫M9(y))]

Then v(E) = 12. If site M1 fails the benefit is v(E′) = 6 where

E
′ = (0 |M2) > x > [(M3|M4) > y > (M5(x) > z > M6(z) | (M7|M8)≫M9(y))]

4. Assessing Orchestrations

In this section a method of partitioning a set of sites into angels and daemons
based on ranking is proposed.

Reliability ranking assumption. Given an Orc expression E we assume that a
ranking containing α(E) is available. This ranking is a measure (“objective” or
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“subjective”) of the reliability of the sites. This ranking can be independent of
any orchestration E or conversely can depend strongly of the structure of E. Let
rk(s) be the rank of site s.

An orchestration assessor may use such a ranking to partition a set of sites
α(E) into angel and daemon sets as follows:

A = {S | S ∈ α(E), rk(S) ≥ λE} , D = {S | S ∈ α(E), rk(S) < λE}

λE is a reliability degree parameter fixed by the assessor following the sug-
gestions of the client. We do not consider in this paper how λE is determined.
The assessor will perform an analysis where sites in A perform as well as

possible and sites in D perform as badly as possible. This is a way to perform
an analysis lying between the two possible extremes “all is good” or “all is bad”.
We can argue this as follows. Sites with a rank higher than λE are “believed”
by the assessor to have non-destructive behaviour. Sites with a rank lower
than λE are unknown entities as far as the assessor is concerned and can have
highly-destructive behaviour. The assessor supposes that during an evaluation
of E a number of sites will fail:

Let a small fraction βE of angelic sites fail during the evaluation – thus,
the number of failing angels is βE × #A = F(A). When an angel fails
it does so in such a way as to maximise the value of the orchestration.

Let a fraction γE of daemon sites fail. The number of failing daemons
is γE × #D = F(D). Failing daemons try to minimize the value of the
orchestration.

For a given λE , βE and γE the behaviour of E can be analysed:

if λE is such that α(E) = A, then evaluation of the behaviour can be
determined by solving a maximization problem (see §5).

conversely, if λE is chosen such that α(E) = D, evaluation of the
behaviour can be determined by solving a minimization problem (see §5).

If A 6= {} and D 6= {} a competitive situation arises and game theory [6] can be
used to analyse system behaviour (see §6). Suppose that the set of failing sites is
a∪d where a ⊆ A, #a = F(A) and d ⊆ D, #d = F(D). System behaviour is
measured by ϕ(a,d)(E). The rewards (or utilities) of the angelic A and daemonic
D players are uA(a, d) = v(ϕ(a,d)(E)) and uD(a, d) = −v(ϕ(a,d)(E)) (this
is a zero sum game as uA(a, d) = −uD(a, d)). When ϕ(a,d)(E) is executed
A receives v(ϕ(a,d)(E)) from D . The strategy a is chosen (by A) to increase
the value of uA(a, d) as much as possible while d is chosen (by D) to decrease
this value as much as possible. Stable situations are Nash equilibria: a pure
Nash equilibrium is a strategy (a, d) such that A cannot improve the utility



180 MAKING GRIDS WORK

by changing a and D cannot reduce the utility by changing d. When players
choose strategies using probabilities we have mixed Nash equilibria. Let (α, β)
be a mixed Nash equilibrium. As in zero sum games all the Nash equilibria
have the same utilities, an assessor can measure the value of a program E by
the utility of A on any Nash equilibrium. Given a Nash equilibrium (α, β), the
expected benefit of an expression E is given by:

Assessment(E, rk , λE , βE , γE) = v(ϕ(α,β)(E))

5. Bounded failures with one player games

The two extremes of behaviour can be determined through angelic and
daemonic analysis:

Angelic failures. In an angelic analysis the viewpoint “the world is as good
as possible even when failures cannot be avoided” is adopted. An angelic player
A plays the game by choosing a list, a = (a1, . . . , an), of failing sites for an
expression E, when F(A) = n. Such a tuple a is called the action taken by the
player A. Defining α+(E) = α(E) \ {0} the set of eligible actions for A is

AA = {(a1, . . . , an)|i 6= j implies ai 6= aj and ∀ i : ai ∈ α+(E)}

To a strategy profile a = (a1, . . . , an) we associate the set Fa = {a1, . . . , an}
and the mapping ϕFa : α+(E) → α(E) ∪ {0}

ϕFa(s) =

{

0 if s ∈ Fa

s otherwise

is used to replace failing sites by 0 and to keep working sites unchanged. ϕFa(E)
denotes the image of E under ϕFa .

Angel(E,A,F(A)) = (A, AA, uA)

defines a one player (A) strategic game (A is used to denote both the player and
the set of sites controlled by this player): the set of actions is AA and the utility
uA = v(ϕFd

(E)). In this game, the angel A has to choose a strategy profile
a giving a maximal utility. As there is only one player, there a maximization
problem rather than a strategic conflict.

Daemonic failures. Daemonic failures are in a sense the opposite of angelic
failures. In this case there is one player, the daemon D trying to maximize
damage. We define Daemon(E,D,F(D)) = (D, AD, uD) such that Fd =
{d1, . . . dn}, d = (d1, . . . , dn) and

AD = {(d1, . . . , dn)|i 6= j implies di 6= dj and ∀i : di ∈ α+(E)}



Bounded Site Failures: an Approach to Unreliable Grid Environments 181

Moreover, as D is intent on maximising damage, a long output is a bad result
and thus uD(d) = −v(ϕFd

(E)). We can imagine uD(d) = −v(ϕFd
(E)) as a

quantity of money that D has to pay, and naturally it is interested in paying as
little as possible. In this case the rational behaviour of the daemon is formalized
as a minimization problem.

Example 2 Let us consider two well-known expressions introduced in [2] .

The first is a sequential composition of parallel expressions and the second is a

parallel composition of sequential expressions:

SEQ-of -PAR , (P |Q) ≫ (R|S) , PAR-of -SEQ , (P ≫ Q)|(R ≫ S)

Let us analyse both expressions with two failures. First, consider in detail a

pure angelic behaviour. As we identify the player and the possible set of failures

we have A = {P,Q, R, S} and the set of strategy profiles is

AA = {(P,Q), (P,R), (P, S), (Q, R), (Q, S), (R,S)}

The utilities are given in the table. In order to maximize the utility, in the case of

SEQ-of -PAR, the angel has to avoid profiles (P,Q) and (R,S). In the case

of PAR-of -SEQ the angel has to take precisely (P,Q) or (R,S). As expected,

the daemon D behaves in the opposite way.

Strategy profiles (P, Q) (P, R) (P, S) (Q, R) (Q, S) (R,S)

Angel A

SEQ-of -PAR 0 1 1 1 1 0
PAR-of -SEQ 1 0 0 0 0 1

Daemon D

SEQ-of -PAR 0 −1 −1 −1 −1 0
PAR-of -SEQ −1 0 0 0 0 −1

6. Two player games: the angel-daemon case

A strategic situation will occur when E suffers the effect of two players with
opposite behaviour: an angel tries to minimize damage but, at the same time, a
daemon tries to increase the damage. Let us consider in more detail this case.
Let E be an Orc expression and assume that α+(E) is partitioned into two
disjoint administrative domains, the angel domain A and the daemon domain
D. We assume that A ∪D = α+(E) and A ∩D = ∅. The notation F(A) = p
means that p sites will fail in A. Similarly we note F(D) = q. We define

AngelDaemon(E,A,D,F(D),F(A)) = (A,D, AA, AD, uA, uD)

as follows. The players are A and D (as usual, we use the same letter to denote
the player A and the set of sites controlled by this player). The strategy profiles
are defined as follows.



182 MAKING GRIDS WORK

The angel A chooses p different failing sites Fa = {a1, . . . ap} ⊆ A.
Any call to a site in A\Fa is successful. We associate with Fa the action
a = (a1, . . . , ap). Formally, A has the following set of actions

AA = {(a1, . . . , ap)|i 6= j implies ai 6= aj and ∀i : ai ∈ A}

The daemon D, chooses q different failing sites Fd = {d1, . . . , dq}. Calls
to sites in A\Fd are successful. The daemon’s action is d = (d1, . . . , dp)
and AD will be the set of actions.

A strategy profile s = (a, d) with Fs = {a1, . . . , ap, d1, . . . , dq} fixes a priori
the set of failing sites. Given E and Fs the length of ϕFs(E) is used to define
the utilities as follows:

uA(s) = v(ϕFs(E)) , uD(s) = −v(ϕFs(E))

Note that AngelDaemon is a zero sum game because uD(s) + uA(s) = 0.

The players can choose the actions using probabilities. A mixed strategy
for D is a probability distribution α : AA → [0, 1] such that

∑

a∈AA
α(a) = 1.

Similarly, a mixed strategy for the daemon player D is a probability distribution
β : AD → [0, 1]. A mixed strategy profile is a tuple (α, β) and the utilities are

uA(α, β) =
∑

(a,d)∈AA×AD

α(a)β(d)uA(a, b)

uD(α, β) =
∑

(a,d)∈AA×AD

α(a)β(d)uD(a, b)

As A and D have opposing interests there is a strategic situation and we
recall the definition of Nash equilibrium as a concept solution.

Definition 3 A pure Nash equilibrium is a pair s = (a, d) such that, for any

a′ it holds uA(a, d) ≥ uA(a′, d) and for any d′ it holds uD(a, d) ≥ uD(a, d′).
A mixed Nash strategy is a pair (α, β) with similar conditions.

Example 4 Let us consider how to assess SEQ-of -PAR and PAR-of -SEQ

under two different situations. In the first sites are ranked

rk(P ) > rk(Q) > rk(R) > rk(S).

Assume that the reliability parameter is such that A = {P,Q} and D = {R,S}
and, moreover, 1/2 of angelic sites will fail and 1/2 of the demonic sites will

also fail (therefore F(A) = F(D) = 1). Then AA = {P,Q}, AD = {R,S}
and the bimatrix games are
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A

D
R S

P 1,−1 1,−1
Q 1,−1 1,−1

SEQ-of -PAR

A

D
R S

P 0, 0 0, 0
Q 0, 0 0, 0

PAR-of -SEQ

In both cases any strategy profile (pure or mixed) is a Nash equilibrium and

Assessment(SEQ-of -PAR, rk , 1/2, 1/2, 1/2) = 1
Assessment(PAR-of -SEQ , rk , 1/2, 1/2, 1/2) = 0

Thus, for example, this assessment indicates to the client that, in the present

environment, there is a reasonable expectation1 of obtaining 1 output when

executing PAR-of -SEQ .

Consider a second case with rk ′(P ) > rk ′(R) > rk ′(Q) > rk ′(S) such

that A = {P,R} and D = {Q, S} with F(A) = F(D) = 1.

A

D
Q S

P 0, 0 1,−1
R 1,−1 0, 0

SEQ-of -PAR

A

D
Q S

P 1,−1 0, 0
R 0, 0 1,−1

PAR-of -SEQ

Here no game has pure Nash equilibria. There is only one mixed Nash equi-

librium with α(P ) = α(R) = β(Q) = β(S) = 1/2, and in this case the angel

has utility 1/2 and the daemon has utility −1/2. In this case

Assessment(SEQ-of -PAR, rk ′, 1/2, 1/2, 1/2) = 1/2

and similarly for PAR-of -SEQ . This assessment indicates to the client that, in

the present environment, an output of 1 or 0 results (with equal likelihood) is a

reasonable expectation.

Example 5 Consider the expression (P | Q | R) ≫ (S | T | U) with

A = {P,Q, S} and D = {R, T, U} with F(A) = 2 and F(D) = 1

A

D
R T U

(P, Q) 0, 0 2,−2 2,−2
(P, S) 2,−2 2,−2 2,−2
(Q, S) 2,−2 2,−2 2,−2

(P | Q | R)≫ (S | T | U)

1Here “reasonable expectation” is meant in the everyday sense of the phrase and is not intended to represent
a probabilistic outcome.
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The pure Nash equilibria are ((P, S), R), ((P, S), T ), ((P, S), U), ((Q, S), R),
((Q, S), T ) and ((Q, S), U). In this case the assessment says that 2 outputs is

the reasonable expectation.

7. Manager’s placement problem

The muskel [1] skeleton-based programming system provides an example
of the kind of application that can be analysed using this approach. In muskel

skeletons are implemented using macro data flow instruction graphs. Macro data
flow instructions are placed on (potentially unreliable) remote worker sites for
execution and the results are returned to the muskel manager for consolidation.
A macro data flow graph may be modelled using an Orc expression. The
behaviour of the muskel system in an untrusted environment may be analysed
by considering its operation under the following assumptions:

Data flow interpreters are unreliable.

There is no recovery mechanism.

Some sites may fail, but all cannot fail simultaneously. This means that
the number of failures is bounded.

An application manager tries to maximize the number of outputs that are
generated.

Suppose that n remote data flow interpreters I = {I1, . . . In} are available. The
manager has to place the set α+(E) of macro insh tructions on the different
macro data flow interpreters. Assume that interpreters are partitioned into two
groups: the first group tries to minimize damage and we call this group the
angel; the other group of interpreters behaves like a daemon. Moreover, in
both cases the number of failures is bounded. A basic question in this case is,
which is the best placement? Here we do not develop a general answer, but just
consider a worked example.

Example 6 Consider the SEQ-of -PAR , (P | Q) ≫ (R | S) with I =
{I1, I2} where I1 is very reliable (angelic) and I2 is very unreliable (daemonic).

Assume that the manager has to place two macro instructions on one interpreter

and the other two on the other interpreter. We assume that in both cases the

interpreters will execute half of the assigned load. What is the best placement?

There are several possibilities.

Consider the outputs when the manager places P and R in I1 (the angel)

and Q and S in I2 (the daemon). If I1 makes P fail, I2 will force Q
to fail and there is no output. This situation is not ideal for I1 (the

angel) because changing the failure from P to R the output improves to 1.
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This new situation is not too bad for I2 (the daemon) because changing

the failure from Q to S worsens the output to 0. This situation is also

unstable. This never ending behaviour can be analyzed by a bimatrix

game having a mixed Nash equilibrium with expected output 1/2.

If P and Q are placed in one interpreter and R and S are placed in the

other, the output is 1. This is the best we can obtain.

8. Conclusions

One of the defining characteristics of grid programming is its dynamicity.
Typically, the grid user has significantly less control over resources employed
than in traditional scenarios: sites used for the execution of application compo-
nents may fail. Thus, an important consideration for practical grid applications
is the provision of an assessment of the quality of the application based on
the expected performance of its constituent execution sites. In terms of an
Orc expression, E, used to model the application, an ordered list for α(E) is
needed. How this list should be built is unclear and is perhaps a controversial
question: the likely behaviour of a site may depend on subjective perceptions
of its qualities. In drawing up the list two distinct classes of consideration may
be identified:

Aspects independent of the application. Here we consider “stand-
alone” qualities of a site. For example, the availability of proxies for a
site may be regarded as enhancing its reliability. We might also take into
account “the reputation” of the sites [8].

Aspects depending of the application. The designer has a priori

knowledge of the available potential sites, S. >From S the designer
has to choose α(E). Once α(E) has been determined the orchestration
has to be developed. We suggest that in many cases the development
of the application and the rank of α(E) are inextricably linked. For
example, a site used only as a “thread” in a parallel search may fail
with little consequence for the application; failure of a site which forms a
constituent of a sequential backbone of an application will be catastrophic
for the application.

The ordering of α(E) depends also on the perception of the risk. Different
people have different perceptions of risk and will rank sites accordingly. For
instance, consider a database D with no back-up available. Assume that D
is crucial for the application so that a failure in D significantly harms the
application. There are two possibilities for ranking D:

Moderate optimism. As a failure of D harms the application, an opti-
mistic view will rank D among the angels. In this way the angel will try
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to avoid having D fail, but if it does fail then the outcome will fall far
short of expectation.

Safe pessimism. Since D is crucial to the application, D is ranked
among the daemons, so that the outcome (likely failure of D), although
far from ideal, is at least predictable and uncertainty is removed.

To better understand these points consider the following “gedanken experiment”.
Imagine that in the sixties you are asked to build an orchestration for a global
war involving nuclear weapons and conventional arms. In order to assess how
pessimistic is the orchestration, should you place the nuclear weapons among
the daemons or among the angels? If you choose the former nuclear catastrophe
ensues (in the simulation); if you choose the latter there is probability of survival.

Failure of grid sites is a reality of grid computing and forms a significant
part of its challenge. Assessing the likelihood of success of an application
requires both an evaluation of the quality of its constituent sites and a means of
combining the results to measure the quality of the assembly. We propose the
use of Orc together with game theory as a way of addressing the latter point;
the assessment of individual sites and the establishment of a ranking among
them remain open questions, touching as they do upon issues such as degree of
trust and perception of risk, issues which remain largely subjective.
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1. Introduction

An e-Science Gateway is an interactive framework that allows a scientific
collaboration to use the resources of a Grid in a way that frees them from the
complex details of Grid software and middleware. By using such a Gateway
users have access to community data and applications that can be composed
and programmed into new applications in a language that is very natural for
scientists. The gateway itself often takes the form of specialized web portal.
Significant examples include the Geophysical Network GEON [1], which pro-
vides a very large community of geo-science researchers with data and tools for
that discipline; NVO [2], the national virtual observatory; the Renci BioPortal
[3], a very rich set of application services for modern biology; NEESGrid, the
Network of Eathquake Engineers [4]; NanoHub, a gateway for education and
research in nano-technology [5]; LEAD, a gateway for advanced research and
education in mesoscale meteorology (which will be discussed as a case study
here); and BIRN [6], the biomedical imaging research network. These are all
examples of persistent e-Science Gateways. Many more exist. However, another
important set of examples include the “Virtual Organizations” (VOs) that arise
out of the needs of a small set of collaborators to solve a particular problem.
For example, consider the requirements of an interdisciplinary science team
doing a study of the effects of genetics on political ambition. Such a study may
require vast data analysis of population individual genome information, social
commentary and psychological interview data from the individuals involved,
and family histories of behavior. The team of experts may require a large num-
ber of specialists who will need to work together as a virtual organization for a
period of a few months to a year and they will need to find ways to share access
to data, scientific ontologies, and data analysis and mining tools. VOs have
similar needs to the e-Science Gateways, but they have the additional challenge
that they must be easy to assemble by non-grid experts in a short amount of
time.

In an e-Science Gateway or VO each user has a private data and metadata
space and a toolbox of components that comprise the basis data analysis tasks
that are composable into the experimental scenarios that define the scientific
protocols of the discipline. These composed patterns of data analysis steps that
define an experiment or scientific protocal, we shall refer to as a workflow. To
make science truly collaborative the Gateway must support sharing of work-
flows, data and data provenance. It must be possible for any member of the
group to “post” discoveries to the whole no matter how trivial, and it should be
possible for others to subscribe to and discover new information on a specific
topic produced by anybody in the VO.
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The programming challenge in these eScience Gateway and VO environments
is to provide the users with a way to build new tools from old ones in a rapid and
reliable manner. There are four additional principals that must be considered.

(a). Scientific experiments must be repeatable. This is fundamental to the
scientific method. Consequently, the gateway or VO system must support
a way to access the provenance of any data product or experiment. In the
case that the data was derived from a workflow, anybody should be able
to re-run the workflow with the original or new data. This has profound
implications on the data and processing architecture of the system.

(b). Workflow composition models must extremely expressive, flexible and
easy to use. In their simplest form workflow descriptions can be viewed
as scripts, which implies they are a simple type of computer program.
Hence one can ask why not use a complete programming language as the
standard Gateway/VO workflow language? For example, Python and Perl
are Turing complete scripting languages that have been used for many
years to orchestrate scientific workflows. The problem with this solution
is that it is simply too hard for the scientist to reuse, modify or adapt these
scripts. The approaches described below are less complete programming
languages, but have proven to be popular with the scientific community
and show great promise.

(c). The programming model must works on massive multicore systems as
well as Grid and the emerging distributed “cloud computing” models.
Multicore computing is going to revolutionize the desktop computing
environment. Systems with 100 cores per processor will dominate the
computing landscape within 15 years. By computing cloud we are re-
ferring to the data centers that are being deployed by companies like
Amazon, Google, Microsoft, IBM and Yahoo. These facilities provide
the potential for vast amounts of data and comput capacity to be available
“on-demand” and at modest cost. The rise of these data and compute
clouds presents an enormous opportunity for eScience and represents the
next stage of the evolution of the Grid concept.

(d). There is a strong social sharing model that is enabled by this style of
organizing and orchestrating scientific computation.

2. Programming e-Science Workflows.

The experience of many e-Science projects is that the execution of a experi-
ment requires some form of workflow description and we have found that the
most popular way to do this is with a simple graphical composition tool. There
have been dozens of workflow description and enactment tools built and some
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are described in [7]. The most successful of these are Kepler [10], Taverna
[13], Triana [7], Pegasys/Dagman [6] and BPEL based tools like XBaya [11].
Most of these allow the user to compose the workflow as a simple directed
acyclic graph (DAG) where each node represents an activity such as a running
an analysis program. The arrows encodes the data dependences from one ac-
tivity in the workflow to another. Different systems use different approaches
to encapsulating an activity. In Kepler the activities are agents. In Taverna and
XBaya these are web services. As illustrated in Figure 1, an activity can have
multiple inputs and produce multiple outputs and the job workflow engine is to
enact an activity as soon as its inputs are all available.

Figure 1. A typical directed acyclic graph representation of a workflow. This is frequently
called a data flow model because the edges represent a sequential data dependence of the output
of one activity on the input of another.

The use of a Web service to encapsulate an activity is very attractive for
several reasons. First it is relatively easy to “wrap” a standard command-line
application as a web service. Second, a Web service can be a virtual entity
that can be instantiated on-the-fly from a service factory [12]. This allows
the service instance endpoint to be located at the most appropriate host. For
example, if the service instance requires access to an application that is installed
on more than one supercomputer, the machine with the lightest load can be
selected.

Programming with simple DAGs is obviously not very general and there
are many cases where some additional control structure can greatly extend the
expressive power of the system. Figure 2 illustrates the case of control structures
mixed with a data-driven graph. In this case a single source component is a
listener agent which monitors external event streams. For example, it might
monitor reports of severe weather events or other external activity that may
trigger the workflow execution. Suppose the listener generates two type of
events and each requires a different type of processing. Type A events require a
single processing step, but type B events come in clusters within a fixed window
of time. Each type B event can be processed independently and the results are
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later merged. The list of events may be a set of radar images from a cluster of
storms. The merged result may be an ensemble forecast for a region. In this
case we do not know if we which type of event will be generated by the listener
until runtime, but suppose the listener also produces a flag is-typeA or is-typeB
each time it generates an input to the rest of the system. Furthermore, we do
not know how many type B events will be in a cluster. XBaya adds two simple
control structures layered on top of the basic data flow graph to address this
problem. A conditional node in the graph can be used to make a test to decide
which downstream block of the workflow is executed.

Figure 2. XBaya control structures for conditionals and map-reduce style iteration layered
on top of a data-flow graph. Dotted lines in the graph indicate control paths. If the condition
evaluates to true the sub-graph indicated by the upper dotted line is enabled. Otherwise the lower
graph is enabled.

To create an iteration XBaya allows a “For each” control block. The input
is a list, each element of which is compatible with the inputs to the sub-graph
between the “For Each” and “End For Each” blocks. This control structure is a
type of MapReduce operation in which an operation (in the figure, this is node
B) is applied to each element of the list. The result of the “End For Each” is
a list of the results. The “reduce” part of the operation can be any operation
that takes a list of inputs and produces a final result. This MapReduce style
computation allows a finite graphical representation of unbounded parallelism
in the execution. This capability is critical for many large scale applications.

3. A supporting Service Architecture.

A service architecture to support these capabilities is illustrated in Figure 3.
The basic architecture is similar to many other gateway systems. This SOA is
based on the LEAD [13] gateway (https://portal.leadproject.org) to the Teragrid
Project [20]. The goal of the LEAD Gateway is to provide atmospheric scientists
and students with a collection of tools that enables them to conduct research on
“real time” weather forecasts of severe storms.

The gateway is composed of a portal server that is a container for “portlets”
which provide the user interfaces to the cyberinfrastructure [15] services listed
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Figure 3. The LEAD Service Oriented Architecture consists of 12 persistent services. The
main services shown here include the Portal Server, the Data Catalog, the users MyLEAD
metadata catalog, the workflow engine and fault tolerance services, the Data Provenance service
and the Data Management Service.

above. The data search and discovery portlets in the portal server talk to the
Data Catalog Service. This service is an index of data that is known to the
system. The user’s personal data is cataloged in the MyLEAD service [16].
MyLEAD is a metadata catalog. The large data files are stored on the back-
end Grid resources under management of the Data Management Service. The
myLEAD Agent manages the connection between the metadata and the data.
Workflow in this architecture is described in terms of dataflow graphs, were
the nodes of the graph represent computations and the edges represent data
dependencies. The actual computations are programs that are pre-installed
and run on the back-end Grid computing resources. However, the workflow
engine, which sequences the execution of each computational task, sees these
computations as just more Web services. Unlike the other services described
in this section, these application services are virtual in that they are created on-
demand by an application factory and each application service instance controls
the execution of a specific application on a specific computing resource. The
application service instances are responsible for fetching the data needed for
each invocation of the application, submitting the job to the compute engine, and
monitoring the execution of the application. The pattern of behavior is simple.
When a user creates or selects an experiment workflow template, the required
input data is identified and then bound to create a concrete instance of the
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workflow. Some of the input data comes from user input and others come from
a search of the Data Catalog or the user’s MyLEAD space. When the execution
begins, the workflow engine sends work requests for specific applications to
a fault tolerance/scheduler that picks the most appropriate resources and an
Application Factory (not shown) instantiates the required application service.

A central component of the system is an event notification bus, which is used
to convey workflow status and control messages throughout the system. The
application service instances generate “event notifications” that provide details
about the data being staged, the status of the execution of the application and
the location of the final results. The MyLEAD agent listens to this message
stream and logs the important events to the user’s metadata catalog entry for
the experiment. The workflow engine, provenance collection service and data
management service all hear these notifications, which also contain valuable
metadata about the intermediate and final data products. The Data Management
service is responsible for migrating data from the Compute Engine to long-term
storage. The provenance collection service [17] records all of this information
and organizes it so that data provenance queries and statistics are easily satisfied.

4. The implications of the technology changes visible on
the horizon.

There are three area where we can see changes in the computing landscape
that will have a major impact on the way we do eScience.

4.1 The multicore future.

What does it mean for eScience when Intel and AMD and other microproces-
sor vendors claim that the current generation of quadcore systems will be rapidly
replaced by systems with a hundred cores. Intel has already demonstrated an 80
core processor. While the implications for programming are clear: application
designers of all types are going to have to learn about parallel programming.
For the commercial software vendors like Microsoft, their entire software devel-
opment platform will need to go through some fundamental transformations.
Obviously considering the problem for software in general is beyond the scope
of this paper. Fortunately there are some clear directions for e-Science gateways.
We can first consider the deployment of the typical e-Science gateway. The
LEAD service stack (briefly outlined in section 3 above) consists of 12 different
persistent Web services. In addition, there are as many as 20 currently running
application services, each of which may control several dozen parallel job in-
vocations. Each parallel job may require from 4 to 100 concurrent processors.
The LEAD SOA alone runs on a rack of 16 quad core servers.

Consequently, it is not unrealistic to suggest that the entire e-Science Gate-
way service set and many of the application services could run on a single



198 MAKING GRIDS WORK

manycore system. This would allow a very tightly integrated, and more reliable
implementation of the core SOA that would only have to support a very small
numbers of users.

Given a 100 core system, the core workflow application services and many
of the applications could also be easily run on this system. Given the ability to
easily express massive parallelism (such as MapReduce) using the workflow
system, it is easy to utilize the full potential of multicore execution.

4.2 Cloud computing.

Companies like Google, Amazon, eBay, Yahoo!, Microsoft and IBM are
building massive data and compute centers. It has been estimated that 25% of
all server shipments are going to these companies to build these massive centers.
There are basically two types of “clouds”. The data clouds are resources that
provide storage services on-demand over the Internet. For example, Amazon
has the Simple Storage Service (S3) which allows a user to store and manage
vast amounts of data through simple web services interfaces. S3 is easy to use
and we have used it as a storage medium for workflows data products.

The more interesting cases are the “compute” clouds. These can be classified
into two categories: MapReduce systems which combine a distributed file
system with very large compute clusters, and virtual machine farms. Google
estimates that they have approximately 1000 different use cases for MapReduce
including the construction of their production web index [18] and Yahoo! has
distributed the Hadoop system based on the same concept. They have made
this available on a 4000 processor system available for public research. An
interesting research challenge is to automatically translate MapReduce-style
workflows, such as those described in section 2 into code that automatically
runs on this system.

The virtual machine farms consist of clusters of processors that can be used
as a parallel computing engine by remote users. These systems allow the user to
configure a virtual machine with all the needed databases and applications and
web services they need to create a remote service. The VM is then deployed
on-demand by the user. From the perspective of the e-Science Gateway this
provides an ideal way to dynamically instantiate application services from the
workflow engine. An early experiment involving workflows for bioinformatics
has shown this to be an effective alternative to large conventional supercom-
puter facilities such as the TeraGrid [19]. An interesting research challenge
is to understand the trade-offs between the multiicore approach to hosting the
computations locally and hosting them on a remote compute cloud. Because
the the web services that represent computations are virtual, it may be possible
for an instance of an application service to freely migrate between the local
multicore system and the remote compute cloud. If it is more efficient to access
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the data when the computation is remote, the application can run there. If, on
the other hand, the service needs more bandwidth in communication with other
services that are running locally, the application can run locally.

4.3 Social Networking for Science

Social networking Wikis and web serves are bring communities together
by providing new tools for people to interact with each other. Services like
Facebook allow groups of users to create shared resource groups and networks.
The LEAD gateway and others would provide a much richer experience for
their users if there was more capability for dynamic creation of special interest
groups with tools to support collaboration. One very interesting example of the
use of social networking for e-Science is the myExperiment project [20] from
the universities of Southampton and Manchester. Users of this Wiki can share
workflow templates, along with notes and annotations. It should be possible to
extend this idea to also include sharing of data and data provenance.
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1. Introduction

Grid computing is about bringing resources together in order to achieve
something that was not possible before. In its early phase there was an emphasis
on combining resources in pursuit of computational power and very large scale
data processing, such as high speed wide area networking of supercomputers
and clusters. This new power enabled researchers to address exciting problems
that would previously have taken lifetimes, and it encouraged collaborative
scientific endeavours. As it has evolved, Grid computing continues to be about
providing an infrastructure which brings resources together, with an emphasis
now on the notion of Virtual Organisations.

This emerging infrastructure is increasingly being considered for ‘every-
day science’, enabling researchers in every discipline to make use of the new
capabilities. However there is significant challenge in bringing the new in-
frastructure capabilities to broad communities of users, a problem which was
perhaps masked previously by the focus on a more ‘heroic’ style of Grid project.
Significantly, this is a programming challenge – how do we make it easy for
people to assemble the services and resources they want in order to achieve the
task at hand?

In this paper we look at programming in the space between the core infras-
tructure services and the users. This area has been the focus of attention for the
Semantic Grid community for several years, initially using Semantic Web and
more recently developing Web 2.0 techniques. In the next section we recap the
Semantic Grid vision, then in Section 3 we take a look at scientific workflows
as a case study in programming in this space, with a particular look at a system
which emerged from one of the Semantic Grid projects. Section 4 reflects on
everyday e-Science in the context of the principles of Web 2.0. We close by
observing that success in programming the grid is not just about programming
abstractions but also about ease of use and what we describe as the ‘social life
of programs’.

2. The Semantic Grid

The notion of the ‘Semantic Grid’ was introduced in 2001 by researchers
working at the intersection of the Semantic Web, Grid and software agent
communities [4]. Observing the gap between aspiration and practice in grid
computing, the report ‘The Semantic Grid: A Future e-Science Infrastructure’
stated:

e-Science offers a promising vision of how computer and communication tech-
nology can support and enhance the scientific process. It does this by enabling
scientists to generate, analyse, share and discuss their insights, experiments and
results in a more effective manner. The underlying computer infrastructure that
provides these facilities is commonly referred to as the Grid. At this time, there
are a number of Grid applications being developed and there is a whole raft
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of computer technologies that provide fragments of the necessary functionality.
However there is currently a major gap between these endeavours and the vision
of e-Science in which there is a high degree of easy-to-use and seamless automa-
tion and in which there are flexible collaborations and computations on a global
scale.

We recognised that this emerging vision of the Grid was closely related to
that of the Semantic Web – which is also, fundamentally, about joining things
up. The Semantic Web is an initiative of the Worldwide Web Consortium (W3C)
and at that time was defined by the W3C Activity Statement as “...an extension
of the current Web in which information and services are given well-defined
meaning, better enabling computers and people to work in cooperation”.

To researchers aware of both worlds, the value of applying Semantic Web
technologies to the information and knowledge in Grid applications was imme-
diately apparent. At that time the service-oriented architecture of the Grid was
also foreseen, and the need for machine-understandable metadata in order to
facilitate automation was clear. Thus the vision of the Semantic Grid became
established as the application of Semantic Web technologies both on and in

the Grid [9]. Additionally, agent-based computing was proposed to achieve
the necessary degree of flexibility and automation within the machinery of the
Grid [8].

The dual aspects of information and services have been explored in vari-
ous projects. Within the UK e-Science program, the Combechem project in
particular focused on the ‘Semantic Datagrid’ [15], while myGrid focused on
services [1]. Semantic Grid has been adopted in a range of grid projects across
Europe and in 2006 the Next Generation Grids Experts Group articulated a vi-
sion for the future service-oriented Grid called the Service Oriented Knowledge

Utility, which captured the Semantic Grid vision and identifying an agenda for
future research [12].

3. Scientific Workflows

The myGrid project produced a scientific workflow system, Taverna [13],
which enables scientists to assemble services in order to conduct their research
– it is a programming solution in the space between the infrastructure services
and the research applications. This is our case study in programming the grid.
We can think of workflows as scripts, and many of the lessons from workflows
extrapolate to scripts in general.

Scientific workflows are attracting considerable attention in the research
community. Increasingly they support scientists in advancing research through
in silico experimentation, while the workflow systems themselves are the sub-
ject of ongoing research and development. The National Science Foundation
Workshop on the Challenges of Scientific Workflows identified the potential for
scientific advance as workflow systems address more sophisticated requirements
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and as workflows are created through collaborative design processes involving
many scientists across disciplines [5]. Rather than looking at the application
or machinery of workflow systems, it is the dimension of collaboration and
sharing that is of particular interest to us here.

Understanding the whole lifecycle of the workflow design, prototyping, pro-
duction, management, publication and discovery is fundamental to developing
systems that support the scientists’ work. Reuse is a particular challenge when
scientists are outside a predefined Virtual Organisation or enterprise – where
there are individuals or small groups, decoupled from each other and acting
independently, who are seeking workflows that cover processes outside their
expertise from a common pool of components. This latter point arises when
workflows are shared across discipline boundaries and when inexperienced
scientists need to leverage the expertise of others.

There are many workflow systems available — we found over 75 after
conducting an informal search. These systems vary in many respects: e.g. who
uses them, what resources they operate over, whether the systems are open or
closed, how workflows are expressed (e.g. how control flow is handled), how
interactive they are, when and how tasks are allocated to resources, and how
exceptions are handled. Our focus here is on scientific workflows which are
near the application level rather than those further down in the infrastructure;
i.e. we are interested in composing scientific applications and components
using workflows, over a service oriented infrastructure (which may include Grid
services). These are the workflows which are close to the scientist, or indeed
the researcher whatever their domain.

3.1 The workflow as a first class citizen

One immediate attraction of workflows which encourages their uptake is
the easing of the burden of repetitive manual work. However, we suggest that
the key feature for scientific advancement is reuse. Workflow descriptions are
not simply digital data objects like many other assets of e-Science, but rather
they actually capture pieces of scientific process – they are valuable knowledge
assets in their own right, capturing valuable know-how that is otherwise often
tacit. Reuse is effective at multiple levels: the scientist reuses a workflow
with different parameters and data, and may modify the workflow, as part
of the routine of their daily scientific work; workflows can be shared with
other scientists conducting similar work, so they provide a means of codifying,
sharing and thus spreading the workflow designer’s practice; and workflows,
workflow fragments and workflow patterns can be reused to support science
outside their initial application.

The latter point illustrates the tremendous potential for new scientific advance.
An example of this is a workflow used to help identify genes involved in
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tolerance to Trypanosomiasis in east African cattle [7]. The same workflow was
reused over a new dataset to identify the biological pathways implicated in the
ability for mice to expel the Trichuris muris parasite (a parasite model of the
human parasite Trichuris trichuria). This reuse was made easier by the explicit,
high-level nature of the workflow that describes the analytical protocol.

Workflows bring challenges too. Realistic workflows require skill to produce
so they can be difficult and expensive to develop. Consequently, workflow
developers need development assistance, and prefer not to start from scratch.
Furthermore it is easy for the reuse of a workflow to be confined to the project
in which it was conceived. In the Trypanosomiasis example, the barrier to
this reuse was how the knowledge about the workflow could be spread to the
scientists with the potential need. In this case it was word of mouth within
one institution; this barrier needs to be overcome. So, we have a situation
of workflows as reusable knowledge commodities, but with potential barriers
to the exchange and propagation of those scientific ideas that are captured as
workflows.

Significantly, there is more to a workflow than a declaration of a process. An
individual workflow description may take the form of an XML file, but these
do not sit in isolation. We can identify a range of properties that are factors in
guiding workflow reuse, including: descriptions of its function and purpose;
documentation about the services with which it has been used, with example
input and output data, and design explanations; provenance, including its version
history and origins; reputation and use within the community; ownership and
permissions constraints; quality, whether it is reviewed and still works; and
dependencies on other workflows, components and data types. Workflows also
enable us to record the provenance of the data resulting from their enactment,
and logs of service invocations from workflow runs can inform later decisions
about service use.

By binding workflows with this kind of information, we provide a basis for
workflows to be trusted, interpreted unambiguously and reused accurately. But
like the workflows themselves, the associated information is currently often
confined to the system from which it originated and thus is not reusable as a
useful commodity in its own right.

3.2 Workflow Systems and Communities

Scientific workflow systems with significant deployment include the Taverna
workflow workbench [13], Kepler [10], Triana [2] and Pegasus [6]. Taverna,
which comes from the myGrid project, is used extensively across a range of Life
Science problems: gene and protein annotation; proteomics, phylogeny and
phenotypical studies; microarray data analysis and medical image analysis; high
throughput screening of chemical compounds and clinical statistical analysis.
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Significantly, Taverna has been designed to operate in the open wild world
of bioinformatics. Rather than large scale, closed collaborations which own
resources, Taverna is used to enable individual scientists to access the many
open resources available in the cloud, i.e. out on the Web and not necessarily
within their enterprise. Many of the services are expected to be owned by parties
other than those using them in a workflow. In practice they are volatile, weakly
described and there is no contract in place to ensure quality of service; they have
not been designed to work together, and they adhere to no common type system.
Consequently, they are highly heterogeneous. By compensating for these
demands, Taverna has made, at the time of writing, over 3500 bioinformatics
orientated operations available to its users. This has been a major incentive to
adoption. This openness also means that Taverna is not tied exclusively to the
bioinformatics domain – any services can be incorporated into its workflows.

By way of comparison, the lifecycle of workflows in the Pegasus system
has also been the subject of study [6]. Pegasus has more of a computational
and Grid emphasis. It maps from workflow instances to executable workflows,
automatically identifying physical locations for workflow components and data
and finding appropriate resources to execute the components; it reuses existing
data products where applicable. Pegasus is used within large scale collaborations
and big projects and is perhaps more typical of traditional e-Science and grid
activities, while Taverna gives an interesting insight into another part of the
scientific workflow ecosystem – it is being used by many scientists on their
personal projects, constituting a distributed, disconnected community of users
who are also the developers of the workflows. Taverna is very much about
services – and scientists – ‘in the cloud’.

3.3 Sharing workflows

It is apparent then that we can view workflows as potential commodities, as
valuable first class assets in their own right, to be pooled and shared, traded and
reused, within communities and across communities, to propagate like memes.
Workflows themselves can be the subject of peer review. Furthermore we can
conceive of packs of workflows for certain topics, and of workflow pattern
books – new structures above the level of the individual workflow. We call
this perspective of the interacting data, services, workflow and their metadata
within a scientific environment the workflow ecosystem and we suggest that by
understanding and enabling this we can unlock the broader scientific potential
of workflow systems.

Workflow management systems already provide basic sharing mechanisms,
through repository stores for workflows developed as part of projects or commu-
nities. For example, the Kepler Actor Repository is an LDAP-based directory
for the remote storage, query and retrieval of actors (processes) and other work-
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flow components and the SCEC/CME workflow system has component and
workflow libraries annotated with ontologies [11]. These follow the tradition of
cataloguing scripting libraries and codes.

In the myExperiment project we are taking a more social approach: we be-
lieve that the key to sharing is to recognise the use of workflows by a community
of scientists [3]. This acknowledges a central fact, sometimes neglected, that the
lifecycle of the workflows is coupled with the process of science that the human
system of workflow use is coupled to the digital system of workflows. The more
workflows, the more users and the more invocations then the more evidence
there is to assist in selecting a workflow. The rise of harnessing the Collective
Intelligence of the Web has dramatically reminded us that it is people who gen-
erate and share knowledge and resources, and people who create network effects
in communities. Blogs and wikis, shared tagging services, instant messaging,
social networks and semantic descriptions of data relationships are flourishing.
Within the Scientific community we have examples: OpenWetWare, Connotea,
PLoS on Facebook, etc. (see corresponding .org Web Sites and facebook.com).

By mining the sharing behaviour between users within such a community we
can provide recommendations for use. By using the structure and interactions
between users and workflow tools we can identify what is considered to be of
greater value to users. Provenance information helps track down workflows
through their use in content syndication and aggregation.

4. Web 2.0

While part of e-Science has focused on infrastructure provision, everyday
scientific practice has continued to evolve, especially in use of the Web. Like
workflows, the mashups which characterise Web 2.0 also enable scientists to
bring together resources in new ways – they provide a means of coupling robust
underlying services. Significantly, creating mashups is not such a specialist
activity as working with Grid or Semantic Web, and this is illustrated by the
many examples of mashups being used by researchers and by ICT experts
within their research domains: the Web is increasingly seen as a distributed
application platform in its own right. The simple interfaces based on REST,
the content behind them such as the Google Maps API, and the sharing culture
that characterises their development and evolution, is leading to uptake which
is having immediate impact on everyday scientific practice in many domains –
and can be contrasted with the uptake of Grid.

We suggest that these two examples of programming above the service level
– the scientific workflows of Taverna and mashups for everyday science –
exemplify the way forward for e-Science and for Grid computing. We believe
that the reason they work is that they thrive in the ecosystem between core



208 MAKING GRIDS WORK

infrastructure services and the user: an ecosystem of scientists, domain ICT
experts, companies, tools, workflow systems, and indeed computer scientists.

We can demonstrate the relationship between e-Science and Web 2.0 in this
space by considering e-Science in the context of the eight design patterns of
Web 2.0 [14]:

The Long Tail While e-Science has often focused on specialist early-adopter
scientists and large scale collaborative projects, Taverna and mashups
are used by the ‘long tail’ of researchers doing everyday science – by
which we refer to the larger number of smaller-scale specialists who are
now enabled by digital science. Rather than heroic science with heroic
infrastructure, new communities are coming online and bring with them
the power of community intelligence. They are often using services ‘in
the cloud’ rather than in the enterprise.

Data is the Next Intel Inside e-Science has been motivated by the need to
handle the data deluge brought about by new experimental methods, and
this data is large, rich, complex and increasingly real-time. Significantly
there is extra value in data through new digital artefacts (such as scientific
workflows) and through metadata; e.g. capturing context for interpreting
data, storing provenance in order to interpret and trust data.

Users Add Value This is already a principle of the scholarly knowledge life-
cycle, now revisited in the digital age. e-Science increasingly focuses on
publishing as well as consuming.

Network Effects by Default Brought about by working in more and more
with shared digital artefacts, the actual usage of information brings new
value – through explicit reviewing but also implicitly through the rec-
ommendations and advice that can be provided automatically based on
usage patterns. For example, the choice of services to run a workflow
can be based on the history of service usage and performance as well as
sharing of community knowledge.

Some Rights Reserved Increasingly we see mechanisms for sharing scholarly
outputs – data, workflow, mashups – which by default are open. This
is exemplified by preprints servers and institutional repositories, open
journals, movements such as Science Commons and technologies such as
the Open Archives Initiative. Open source development, and the sharing
of scripts used in mashups, exemplify the openness which accelerates the
creation of programming solutions.

The Perpetual Beta The technologies that scientists are choosing to use are
not perfect, but they are better than what went before. The solutions being
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adopted in the space we are discussing are often the result of extreme
programming rather than extensive software engineering, providing the
essential agility in response to user needs.

Cooperate, Don’t Control The success stories come from the researchers who
have learned to use ICT – we are seeing an empowering of domain experts
to deliver the solutions. Indeed, solutions which take away this autonomy
may be resisted. This is achieved by making it as easy as possible to
reuse services and code.

Software Above the Level of a Single Device e-Science is about the intersec-
tion of the digital and physical worlds. Sensor networks are responsible
for the data deluge, but equally mobile handheld devices are increasingly
the interface as opposed to portals in Web browsers on PCs.

5. Discussion

The Semantic Grid activities have demonstrated the value of Semantic Web
technologies to meet some of the needs of e-Scientists, especially for informa-
tion reuse and where automation is required. They have also demonstrated the
need for ease of programming in the space above the robust services to enable
agile provision of better solutions for the users.

Sometimes Web 2.0 is seen as a competitor to Grid, and criticised by the grid
community for lack of robust engineering and the rigour needed to underpin
scientific research. We have presented a different view: that a Web 2.0 approach
is absolutely appropriate for use in the space between the robust grid infrastruc-
ture and the user. We note that the SOKU vision of robust services (‘utilities’)
which are dependable and easy to use is entirely consistent with this.

The key point for those involved in programming the Grid is that ease of use
– usability of programs – is just as important as well-designed programming
models. It is necessary to think outside individual programs and think about
their lifecycle, the interactions of users, developers and scientists with the
programs – what we could call the ‘social life of programs’. The myExperiment
project adopts this approach for workflows.

One of the propositions of Grid computing has been a universal Grid achieved
by a certain style of coupling of resources. The picture we have drawn is a
little different: some robust services ‘in the cloud’, perhaps based on grid
technologies, which are plumbed together towards the application level. We
suggest that this latter view is more achievable and is actually what many users
require. Aside from the distributed application platform, these technologies are
clearly complementary within the research lifecycle; e.g. grid for capturing or
generating data and Web 2.0 for working with it effectively.

e-Science is now enabling researchers to do some completely new research.
As the individual pieces become easy to use, researchers can bring them together
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in new ways and ask new questions. Hence usability of the programming tools
– workflows, mashups, whatever new techniques may emerge – is what will
enable new science. This should be on the agenda for the grid programming
community.
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∗This research is carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).
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1. Introduction

Workflow represents a popular programming model for grid applications. In
a workflow, users express the data dependencies incurring among a set of blocks,
possibly using a DAG. Each block processes input data to produce output data.
Workflow schedulers then arrange the computations for grid execution in such a
way

all the parallelism implicitly defined through the (absence of) dependen-
cies in the DAG is exploited, and

the available grid resources (processing elements) are efficiently used.

Here we discuss an approach aimed at implementing workflows on top of the
muskel distributed macro data flow interpreter [7]. We take into account the
execution of workflows on a set of input data items. The set of input data items
represents the program input stream. Each item on that stream will be submitted
to a workflow process. The results of that processing will appear as a data items
onto the program output stream. Usually the workflows considered in grids are
such that nodes in the DAGs are complex, possibly parallel applications that
process data contained in one or more input files to produce data in one or more
output files [11]. Here we consider a much simpler class of workflows: those
whose DAG nodes are (possibly complex) Java “functions” processing generic
(possibly complex)Object input parameters to produce (possibly complex)
Object output results.

The muskel distributed macro data flow interpreter [1] has been developed to
support structured parallel programming on clusters, networks of workstations
and grids. Using muskel, programmers write parallel applications according to
the algorithmic skeletons programming model [4–5]. Parallel code is therefore
expressed as a composition of skeletons: parallel design patterns modelling well
known parallelism exploitation patterns, specialized through proper sequential
code parameters.

In muskel, each skeleton program is translated in a macro data flow graph
whose instructions (nodes) model large chunks of side effect free (i.e. functional)
sequential Java code. “Functional” code is provided as classes implementing the
Compute interface. This interface only includes a Object compute (Object

in) method, which is the one use to wrap the sequential computation imple-
menting the function. Each time a new data item is submitted to the program
input stream, an instance of the data flow graph with the input data placed in
the proper data flow tokens is submitted to the muskel distributed interpreter
for the evaluation. The distributed interpreter schedules fireable1 macro data

1a data flow instruction is fireable iff all the input tokens it needs are present
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flow instructions for execution on the available processing resources and then it
stores back result data tokens either in the proper positions of the graph (target
macro data flow instructions) or on the program output stream (final result
tokens only).

2. Aspects to implement workflows

In a sense, the way muskel implements skeleton programs on top of the
macro data flow interpreter is definetly close to the way workflows are usually
implemented on distributed architectures and grids. As muskel distributed
macro data flow interpreter efficiency has already been demonstrated [1], we
tried to exploit muskel to implement workflow computations. As already stated,
we considered workflows processing stream of input data to produce stream of
output data. This allows to express both parallelism implicit in the workflow
definition (and therefore exploited within the computation of a single instance
of the workflow) and stream parallelism (parallelism among dinstinct instances
of workflow computation, relative to independent input data items). In order
to obtain a macro data flow graph from the workflow abstract code, we exploit
Aspect Oriented Programming (AOP) techniques [10], as follows2:

Users express workflows as plain Java code, with the constraint the nodes
of the workflow must be expressed using Compute object calls.

Users declare a Manager object passing it an Iterator providing the
input tasks. The Manager object completely and transparently takes care
of implementing stream parallelism using the muskel distributed macro
data flow interpreter.

AOP pointcuts and advices are used to intercept the calls to the compute
methods and to transform such calls into proper fireable macro data
flow instructions submitted to the muskel distributed macro data flow
interpreter.

Sample code used to model workflows is shown in Figure 1. The right part
of the Figure lists the Java code modelling the workflow graphically depicted
in the left part of the Figure. Multiple results are modelled returning Vector

objects and multiple input parameters are modelled with a “vararg” compute
method3.

More in detail, the calls to compute methods are transformed into the sub-
mission of a proper (already fireable) macro data flow instruction to the muskel

2we used AspectJ AOP framework through the AspectJ [13, 2] Eclispe plugin, actually
3varargs have been introduced in Java 1.5 and allow to pass a variable number of arguments (of the same
type) to a method; the arguments are referred to in the method body as array elements
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F

G1 G2

H

  ...

  Vector resF = 

    (Vector) F.compute(in.elementAt(0));

  Object resG1 = 

    G1.compute(resF.elementAt(0));

  Object resG2 = 

    G2.compute(resF.elementAt(1),

               in.elementsAt(1));

  Object resH = 

    H.compute(resG1, resG2);

  ... 

Figure 1. Sample workflow (left) and relative Java code (right)

distributed macro data flow interpreter modified in such a way a Future for the
result is immediately returned. If one of the input arguments of the compute
call is a Future, the advice intercepting the compute method call takes care of
waiting for its actual value to be computed before submitting the macro data
flow instruction to the interpreter.

As input Future actual values are only required by the advice right before
the workflow node is started, parallelism implicit in the workflow is correctly
delegated to the underlying muskel interpreter. As an example, consider the
workflow of Figure 1. The functions G1 and G2 are evaluated (their evaluation
is requested by the advice to muskel interpreter) sequentially. However, as
the first one immediately returns a Future, the second one (also returning a
Future) will eventually run in parallel on a distinct remote processing element
as outlined in Figure 2. When the evaluation of the H node is requested, the
advice intercepting the request will realize two futures are passed as input
parameters and therefore it will wait before submitting the node evaluation
request to the muskel interpreter up to the moment the two actual values of the
“input” Futures are available. Overall, advices transforming calls to compute

methods into fireable macro data flow instructions act as the data flow matching

unit, according to classical data flow jargon.
The approach suggested here to implement workflows on top of the muskel

macro data flow interpreter presents at least two significant advantages:

the whole, already existing, efficient and assessed muskel macro data
flow interpreter structure is fully exploited. The muskel interpreter takes
completely care of ensuring load balancing, fault tolerance (w.r.t. remote
resource faults) and security;

users are only asked to express workflows with elementary Java code,
possibly spending some time wrapping workflow node code in Compute

objects and declaring a Manager object which is used to supply input
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data, retrieve output data, control non functional features (e.g. parallelism
degree in the execution of the workflow) and to ask the evaluation of the
workflow code.

3. Implementation details

We shortly recall muskel features (§ 3.1), then we point out the most notable
aspects related to workflow implementation on top of muskel (§ 3.2). The
interested reader may find more details concerning muskel features in [14, 7,
8].

3.1 muskel

muskel executes macro data flow code derived from user defined skeletons
by exploiting a distributed macro data flow interpreter. Load balancing is
guaranteed as the fireable macro data flow instructions are delivered to remote
data flow interpreter instances according to an auto scheduling policy: idle

Figure 2. Transition diagram relative to the execution of part of the workflow of Figure 1.
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remote interpreter instances ask the instruction repository for new fireable
instructions to be executed. Efficiency in the execution of muskel programs
is close to 1 provided the average grain of the macro data flow instructions
is sufficiently high (see Fig. 3). The more innovative feature of muskel,
however, has been the introduction of the computation manager concept: an
entity taking care of all the non functional aspect of distributed/parallel program
execution. The muskel manager, in particular, completely deals with fault
tolerance aspects. In case of a failure of a remote interpreter instance, it
arranges to reschedule the computations (fireable instructions) scheduled to the
failing node to other nodes, possibly recruited on-the-fly exploiting a simple
peer-to-peer algorithm.

3.2 Workflows on top of muskel

In order to be able to express workflows, the user must write one class per
workflow node. The class has to implement the Compute interface, that is a
very simple interface such as:

public interface Compute extends Serializable {

public Object compute(Object ... params);

}

The compute method is assumed to compute the workflow node results (the
returned Object) out of the input parameters params. Then the workflow can
be described in a class implementing the Workflow interface, which is defined
as follows:

public interface Workflow {

public Object doWorkflow(Object param);

}

As an example, a workflow such as the one sketched in Fig. 1 can be
described by the class:

public class WorkFlow1 implements Workflow {

public Object doWorkflow(Object task) {

Vector resF = (Vector) F.compute(((Vector)task).elementAt(0));

Object resG1 = G1.compute(resF.elementAt(0));

Object resG2 = G2.compute(resF.elementAt(1),((Vector)task).elementAt(1));

Object resH = H.compute(resG1, resG2);

return resH;

}

}

The code style here is quite close to the style used when programming plain
Java applications, actually.
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We capture the execution of the Compute calls in the workflow exploiting
aspects. The pointcut is defined on the call of the compute method of any
object implementing Compute:

pointcut computeRemotely(Object param[], itfs.Compute code) :

call(Object itfs.Compute.compute(Object ... )) &&

!within(execEngine.Engine) &&

args(param) && target(code) ;

The advice invoked on the pointcut is an around advice such as:

execEngine.Engine eng = new execEngine.Engine();

Future around(Object param[], itfs.Compute code) : computeRemotely(param, code) {

for(int i=0; i<param.length; i++) {

if(param[i] instanceof Future) { // reifing each parameter right before call

param[i] = ((Future) param[i]).getValue();

}

}

Object future = eng.exec(codice, param); // deliver fireable instruction

return future; // and return the corresponding Future object

}

It arranges to collect the Compute class name and the input parameters and
creates a macro data flow instruction which is submitted to the distributed
muskel macro data flow interpreter via the (muskel predefined) exec.Engine
object instance declared in the aspect class. Input tokens to the macro data flow
instruction that are Future instances rather than plain reified objects, are eventu-
ally reified on the fly within the advice. Eventually, a Future object is returned.
Each Future object represents an handle that can be eventually used to retrieve
the actual data computed by the distributed interpreter during the compute call.
In particular, Future interface provides two methods: a Object getValue()

method to get the actual value of the Future, possibly waiting for the com-
pletion of the corresponding computation, and a boolean isReady() method
to test whether the computation producing the actual value of the Future is
already terminated (this is used to support asynchronous calls).

It is worth pointing out that the task of properly designing AOP code is not
in charge to the application programmer. All AOP related code is developed
by system programmers. Application programers just exploit it by properly
defining the proper Compute and Workflow code incorporating the “business
logic” of the application or, rephrasing, fully detailing the functional aspects of
the application.

As a whole, the procedure just described models an asynchronous execution
of the macro data flow instructions implementing the workflow nodes. It allows
to fully exploit the parallelism intrinsic to the workflow, by properly using
Futures. It derives from the approach we first suggested in [9] where we
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used annotations to denote side effect free method calls in plain Java codeto
be executed in parallel. However, the approach discussed in this work presents
several peculiarities.:

First of all, here there is a sharp-cut distinction between the “control”
and “business” code, actually contained in separate files, whereas with
PAL programmers write business code and annotations (that behaves as
control code) inside the same file.

PAL was conceived for exploiting method-level parallelism: through a
simple program enrichment process, programmers choose which Java
methods-call should be transformed in asynchronous ones i.e. PAL allows
to add parallelism to legacy java code with a minimum intervention.
Instead, here we ask the programmers to structure their application as a
workflow.

PAL provides a fixed number of annotations (hence a very limited number
of action can be performed) that an adapter-based architecture exploits
to transform bytecode at runtime. The transformation process depends,
in a way, on the adapter used. The approach described in this work
is strongly coupled with muskel but the code transformation policies
implementation is based on AspectJ, the most widely diffused tool for
aspect oriented programming, which offers a rich set of mechanisms
for customizing the “aspectization” process. As a consequence, the
programmers can customize/optimize/change the transformation process
by simply modifying the aspects (without a direct code update).

As already stated, we are interested not only in the exploitation of parallelism
within the evaluation of a single workflow instance, but also in exploiting
the parallelism between different instances of workflows run on distinct in-
put data sets. In order to support stream parallelisms, we provide the user
with a StreamIterator manager. This manager takes as parameters an
Iterator (providing the input data sets to be processed by the Workflow)
and a Workflow. It provides a method to compute the whole bunch of inputs,
as well as a method to get an Iterator that can be used to retrieve workflow
results. Using the StreamIterator manager, the main code relative to our
example can therefore be expressed as follows:

public static void main(String[] args) {

Workflow wf = new WorkFlow1(); // workflow to be used (userdef)

InTaskIterator intIt = // provide the input tasks ...

new InTaskIterator(); // ... via an iterator (userdef)

Manager mgr = new StreamIterator(wf,intIt);// declare the manager

mgr.go(); // start parallel computation

Iterator resIt = mgr.getResultIterator(); // get access to result iterator

while(resIt.hasNext()) { // while there are more results ...
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Object result = resIt.next(); // get one and

... // process it (userdef)

} // that’s all

}

The main task of the StreamIterator manager is to invoke execution of
the parameter Workflow instances on all the input data sets provided by the
Iterator. This is achieved exploiting a proper Thread pool and activating
one thread in the pool for each independent workflow computation. Then, the
AOP procedure illustrated above intercepts the calls to compute methods and
arrange to run them in parallel through the muskel distributed macro data flow
interpreter.

4. Experiments

In order to prove the effectiveness of the approach, we performed some
experiments on a newtwork of workstations with Java 1.5 accessible via plain
ssh/scp rather than with other more sophisticated grid middleware. The
scalability of plain muskel has actually already been demonstrated. Figure
3 shows how with suitable grain of the workflow nodes (i.e. of the Compute

functions) efficiency close to the ideal one is achieved. In this context, the
grain G = Tcompute/Tcommunication is the time spent to compute a workflow
node (i.e. a fireable macro data flow instruction) on a machine divided by the
time spent to sent the parameters and to receive the results to and from the
machine. The main (and only) difference between plain muskel and the system
proposed here to execute workflows on top of muskel lies in the way fireable
instructions are provided to the distributed data flow interpreter of muskel. In
plain muskel, fireable instructions are taken from a compiled representation of
a macro data flow graph. In particular, each time a new token arrives to a macro
data flow instruction in the graph (either from the input stream or as the result
of the distributed computation of another macro data flow instruction) the target
macro data flow instruction is checked for “fireability” and, possibily, delivered
to the distributed macro data flow interpreter. The time spent is in the sub-micro
second range (net time, not taking into account time spent to copy parameters
in memory during the interpreter call). When executing workflows according to
the approach discussed in this work, instead, fireable instructions come from the
advice invoked on the pointcut intercepting the compute calls. We measured
the overhead in this case and the results are shown in the following table (times
are in milliseconds):

Average 23.09 Minimum 19
Standard deviation 3.01 Maximum 27

These values are relative to a 2 GHz Core 2 Duo machine, running Mac OS/X
10.4.9, Java 1.5.0-07, AspectJ 1.5.4 with AspectJ tools 1.4.2 and Eclipse 3.2.2.
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Figure 3. Efficiency of the muskel/aspect workflow prototype

On the same machine, delivering a fireable instruction to the macro data flow
interpreter with plain muskel requires an average of 0.004 milliseconds. The
difference in the times is not surprising: in the former case, we go through pure
meta programming tools and we “interpret” each call, while in the latter we
use plain (compiled) Java to handle each one of the calls. Therefore, we can
conclude the average 23 milliseconds represent the pure overhead spent each
time a new fireable instruction has to be computed (i.e. each time one of the
workflow Compute nodes is computed). The time spent in reifiyng a Future,
instead, is negligible (this not taking into account the time spent to wait for
actual production of Future values, of course). This allows us to conclude
that the parallel execution of workflows on top of muskel slightly increases the
grain required to achieve almost perfect scalability

5. Related work & Conclusions

Sobral et al. discussed the usage of AOP to support modular computing [16,
15, 6]. They use AOP techniques to separately solve partition, concurrency
and distribution problems and eventually show how the related aspects can be
used to provide a (kernel for a) general purpose, modular parallel computing
framework. The proper usage of the aspects proposed, however, requires in
general more specific programmer knowledge than the one required to exploit
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the approach we present here. Other authors [3] demonstrated that AOP can
be efficiently exploited in conjunction with components and patterns to derive
parallel applications for distributed memory systems. Although their work
targets the same kind of systems we target here, again the approach followed in
[3] highly relies on the ability of the programmer to find out the right places
to exploit aspects. In [12] another approach exploiting aspects to parallelize
Java applications from the Java Grande forum using AspectJ is presented. Good
results are shown in the paper, but the procedure used to exploit aspects requires
entering the program details to find out possibilities for parallelization.

We have shown how AOP techniques can be seamlessly used to transform a
very basic kind of workflows in such a way they can be executed on distributed
target architectures through the muskel macro data flow interpreter. Exploita-
tion of AOP techniques allow to completely separate the concerns relative to
parallelism exploitation and application functional core. In particular, the same
application code used to perform functional debugging on a single, sequen-
tial machine may be turned into parallel code by adding aspects, compiling it
through AspectJ and then running it on the muskel runtime.

The way used to write workflow code is quite basic Java programming.
Workflow components must implement a simple interface, and programmers are
explicitly required to provide them as side effect free sequential components. We
are currently completing a simple GUI that can be used to derive automatically
Java code from a graphic representation of the workflow.

Preliminary experiments show that the approach is perfectly feasible and that
actual speedups can be achieved provided that the workflow nodes are medium
to coarse grain.
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Abstract

Besides computation intensive tasks, the Grid also facilitates sharing and
processing very large databases and file systems that are distributed over multiple
resources and administrative domains. Although accessing data in the Grid is
supported by various lower level tools, end-users find it difficult to utilise these
solutions directly. High level environments, such as Grid portal and workflow
solutions provide little or no support for data access and manipulation. Workflow
systems are widely utilised in Grid computing to automate computational tasks.
Unfortunately, the ways of feeding data into these workflows is limited and in
most cases requires additional tools and manual intervention. This paper describes
how data can be fed into computational workflows from heterogeneous data
sources. The P-GRADE Grid portal and workflow engine have been integrated
with the SDSC Storage Resource Broker (SRB) in order to access SRB data
resources as inputs and outputs of workflow components. The solution automates
data interaction in computational workflows allowing users to seamlessly access
and process data stored in SRB resources. The implemented solution also enables
the seamless interoperation of SRB, SRM (Storage Resource Manager) and
GridFTP file catalogues.

Keywords: grid workflow,SRB,P-GRADE portal,interoperation,data management
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1. Introduction

Current production Grid systems all aim to support data intensive applications
and offer solutions such as OGSA-DAI [1] (Open Grid Services Architecture
Data Access and Integration) or SRB [2] (SDSC Storage Resource Broker) to
access large data collections. These tools provide the required abstraction of
data that may span over several resources and administrative domains. However,
most end-users find it difficult to access these relatively low-level tools directly.
End-users require a graphical user interface, typically a Grid portal, where
they can create, execute and monitor their applications in an integrated envi-
ronment. Besides simple job execution Grid portals may also offer additional
functionalities, for example workflow composition, or selection and execution
of applications from code repositories with custom input parameter values.
These applications may require access to large data collections.

Unfortunately, current Grid portals and application hosting environments
provide very little or no support at all to access advanced data manipulation
tools. Solutions are limited to browser portlets that enable accessing data
collections and doing the necessary data movements and transformations prior
or after job execution manually. Examples include the BIRN (Biomedical
Informatics Research Network) [17] and the NCMIR (National Center for
Microscopy and Imaging Research) [18] portals that both provide SRB browsing
and manipulation capabilities for end-users. The NGS Application Repository
[15] supports data browsing and staging, currently only from GridFTP [8]
servers, but it will also be extended with SRB support in the near future.

In case of more complex application scenarios, that require the execution of
several jobs with complex dependencies between them, manual data manipula-
tion provided by the above solutions is not feasible. Workflow solutions, such
as Triana [3] or Taverna [4] provide automatic orchestration of these complex
scenarios, staging and automatically transferring data along the workflow. How-
ever, these solutions are currently limited concerning their data manipulation
capabilities and the data sources they can utilise. Taverna, for example, is
a very effective workflow management environment but not easily adaptable
for current production Grids. Its main aim is not job submission rather the
connection and orchestration of pre-deployed services. As a consequence, data
input is defined by the implementation of the actual service. Using Triana, our
other example, programs can be assembled from a set of building-blocks by
dragging them into a workspace window and connecting them. However, Triana
is not integrated with Grid data solutions such as SRB or OGSA-DAI.

The aim of this paper is to describe how computational workflows can be
extended with more sophisticated data management capabilities. In order to
demonstrate this concept the workflow engine of the P-GRADE grid portal has
been extended to seamlessly access data stored in SRB repositories. Section 2
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of this paper describes how data is currently handled by the P-GRADE portal,
followed by the description of the SRB/P-GRADE integration in section 3.
Finally, future work and conclusions are given in section 4.

2. Data Driven Workflows in P-GRADE

Figure 1. A P-GRADE portal workflow

The P-GRADE portal is a general purpose, workflow oriented computational
Grid portal that supports the development and execution of workflow-based
Grid applications. Detailed description of the portal can be found in several
publications such as [5], or on the P-GRADE portal Website [10]. Here we only
concentrate on describing the current data manipulation and transfer capabilities
of the portal.

The basic unit of execution in the P-GRADE portal is the workflow. A
P-GRADE portal workflow is a directed acyclic graph where the nodes of the
graph represent sequential or parallel jobs, as illustrated on Figure 1. The nodes
are communicating with each other via the means of file transfer. Each job
requires zero or more input files and produces zero or more output files. The
files are currently transferred between the nodes via GridFTP [8] file transfer,
represented by the arcs of the graph on Figure 1. The arcs are connecting the
output ports of one job to the input ports of another.

When creating a computational workflow the user either uploads the executa-
bles to the portal server from a local machine, or selects the codes from a legacy
code repository [11]. In both cases the input files to workflow components
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can either be local or remote. Local input files are uploaded from the user’s
local file system to the portal server during workflow creation, and from here at
execution time they are transferred to the Grid compute resource. Local input
files are typically small in size. However, a Grid application may require huge
amount of input data that is stored in external servers. In this case the user can
define the input as "remote" and provide its GridFTP address (in case of Globus
based Grids) [8] or LFC logical file name (in case of EGEE type of Grids) [7].
An external input file is always directly transferred form its storage location to
the executor site.

Similarly to input files, output files can also be either local or remote, fol-
lowing the previously described logic. In case of local output files the user
can define the output as permanent that will be available for download on the
portal server after workflow execution, or volatile that will only be used for
internal communication and will automatically be deleted when the workflow
has finished. Remote output files are always permanent. The handling of local
and remote input/output files is represented on figure 2. The following section
descries how these data handling capabilities have been extended with SRB
support.

Figure 2. Local and remote files in P-GRADE workflows



Heterogeneous Data Sources in GRID Workflows 229

3. SRB Data Resources in P-GRADE Portal Workflows

3.1 SRB Integration Options

The SDSC Storage Resource Broker [13] is a software product developed by
the San Diego Supercomputing Centre that provides access to files and database
objects seamlessly across a distributed environment. SRB abstracts the physical
location of the data and the way it is stored by presenting the user with a single
file hierarchy for data that is actually distributed across multiple storage systems.
SRB provides a way to access data sets and resources based on their logical
names or attributes rather than their physical locations. The solution is widely
deployed in production Grid systems including the UK National Grid Service
(NGS) [6].

SRB functionalities can be offered in the P-GRADE portal in different ways.
The most obvious solution is to extend the portal with an SRB browser portlet.
Adding an SRB browser portlet to P-GRADE definitely enhances its capabilities
and it is a rather useful tool for many end-users. They can perform a wide range
of operations on SRB resources using the portal’s graphical user interface.
However, it takes us only a little bit closer to workflow level integration as the
data still has to be manually copied from and to the SRB resource and fed into
the workflow. Figure 3 illustrates the SRB browser portlet implemented for
P-GRADE. Although there are some other similar portlets available (e.g. in the
BIRN portal [17]), the reason for implementing our own solution was justified
by its flexible architecture.

The portlet was designed in a plug-in structure which allows easily extending
its functionality towards other file storage systems such as GridFTP or EGEE
file catalogues. The portlet, besides the usual file and directory operations, also
supports metadata creation and handling. Figure 3 shows the SRB portlet with
data and metadata management.

Besides an SRB browser portlet, the major interest of our work is integrating
SRB at workflow level. This integration can be done at two different levels: at
port level or at job level.

The port level integration means that input or output ports of a P-GRADE
portal job could refer to files stored on SRB storage facilities and consequently,
utilise SRB data stores for file storage and file retrieval. The current types of
ports, "local" and "remote", are extended with a third port type that refers to
SRB resources. The solution allows users to process input data in workflow
jobs stored in SRB data stores, and also to write the output of the jobs back to
an SRB resource.

The second option is the job level integration. Portal users can currently
define and execute "standard" or "GEMLCA" jobs. A standard job represents
a GT2 or g-Lite job submission, while a GEMLCA job [11] is a service invo-
cation that refers to code stored in the GEMLCA legacy code repository. This
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Figure 3. SRB browser portlet in the P-GRADE portal

framework can be extended with a third job type, called "SRB" job. The "SRB"
job is a set of SRB commands, potentially created with the help of a built in
GUI within the portal, which manipulates an SRB data collection. This job can
still be connected to other "standard", "GEMLCA" or "SRB" jobs with the help
of "local", "remote" or "SRB" ports.

The second half of this section describes the port level integration, while the
job level solution will be introduced in a forthcoming paper.

3.2 SRB resources as input/output ports

The port level integration of SRB into the P-GRADE portal raises three
different challenges:

the SRB client environment has to be properly set up and configured,

SRB port definition and input file selection have to be enabled in the
workflow editor of the portal,

and finally, data has to be retrieved from SRB resources before job
execution, and transferred back afterwards.

3.2.1 Setting up the SRB client environment. When dealing with
SRB environment descriptions, the aim was to enable access to multiple SRB
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Figure 4. SRB settings portlet in the P-GRADE portal

servers at the same time. These SRB servers can be located in different Grids
and may require different certificates to access. The P-GRADE portal is a
multi-Grid portal [14] that allows users to map jobs to and access data located
in different production Grids (which may use different Grid middleware and
require different certificates) within the same workflow. The portal allows
storing multiple certificate proxies on the portal server at the same time mapping
them to different Grids. Our aim was to extend this multi-Grid capability to
SRB resources.

Before running any SRB client, the client environmental variables need to be
set up. Usually, this is accomplished via a configuration file named MdasEnv.
This is a simple text file that contains lines of parameter/value pairs where
each value is given in quotes. In order to set up the client environmental
variables, an SRB Settings portlet has been developed and added to the P-
GRADE portal. Users can load MdasEnv files from their own file-system, can
view and modify existing SRB environmental files, and most importantly, can
create new ones on the fly. This portlet has been designed and implemented in
such way that enables the portal to handle multiple MdasEnv files for a particular
user. These environmental files are mapped to Grids and this way linked to
potentially different Grid user certificates. The solution extends the multi-
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Grid capabilities of the portal to SRB resources and allows users to connect to
multiple SRB servers concurrently, independently of their Grid membership.
Using the graphical user interface, users can also easily edit the content of the
MdasEnv files without learning its actual syntax.

Figure 4 illustrates an example setup where five different MdasEnv files
are loaded to the portal, as shown in the left window of the screen. The right
window displays the values of the highlighted environmental file that is being
mapped to the "NGS" Grid. As the portal already associates this Grid with
a particular user certificate, it will use that particular certificate to access the
specified SRB resource.

Figure 5. Port properties window and SRB File Browser

3.2.2 Workflow creation and execution using SRB ports. The next
challenge after setting up the SRB environment was to modify the workflow
editor of the portal and enable the creation of SRB input and output ports. This
required the introduction of a new port type called "SRB" besides the currently
existing "Local" and "Remote" types.

The left hand side of figure 5 depicts the port properties window, modified
to handle SRB file types. The user sets "File type" to SRB and clicks on the
"File Brower". The next task is to select the Mdas file to be used from a drop-
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down list. As this file is mapped to a particular Grid, the portal knows which
certificate to use when accessing the selected collection, as it was explained in
the previous section. After connecting to the selected collection, the built in
SRB file browser can be used to find the required input file, as shown on the
right hand side of figure 5.

The final challenge is to access the SRB data collection and retrieve the
selected files before job execution, and also to copy SRB output files back to
the SRB resource. In its current implementation, the P-GRADE portal employs
a script-based solution for file staging. These scripts suffered necessary modi-
fications to extend this file staging to SRB resources. SRB is accessible from
various client solutions like Scommands (UNIX-like command-line interface),
Jargon (JAVA API), C client (C API), inQ (Windows based browser/query tool)
and mySRB (web-based browser/query tool). After a critical analysis of SRB
client solutions, the SRB command-line client (s-commands) was selected and
installed on the portal server. The grounds of this decision were completeness
of the command line client giving access to all the SRB functionality, and also
its suitability to be integrated with the P-GRADE portal scripts.

If all SRB file transfers occur and terminate on the portal server then this
machine can easily become a bottleneck. In order to overcome this shortcoming
the implemented solution utilises direct file transfer between the SRB resource
and the executor site whenever it is possible (see figure 6). The portal checks
whether the executor site has an SRB client installed (Executor site 1 on figure
6). If it finds a client on the site then the portal utilises this client to directly
transfer input/output files. If the executor site does not support SRB (Executor
site 2) or the direct transfer fails, then the file is first transferred to the portal
server utilising the portal’s SRB client, and then to the executor site by the
means of GridFTP (in this case the maximum size of the transferred file has to
be limited to protect the portal server).

3.3 Results of the integration

The integration of SRB data resources into P-GRADE workflows allows
utilizing data coming from and going to SRB file catalogues. Moreover, the
different port types, including local, remote and SRB ports, can be freely mixed
as input or output of workflow components. This solution allows the seamless
interoperation of SRB catalogues, GridFTP file systems and EGEE storage
elements (based on SRM [16]) at the level of P-GRADE workflows. In order
to demonstrate these capabilities a workflow simulating urban car traffic [12]
was created. As it is shown on figure 7, jobs of the workflow are running in
different grids (US OSG [9], UK NGS [6], EGEE [7]) and utilise data resources
based on different technologies (SRB, SRM [16], GridFTP [8], local) from
these different grids.
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Figure 6. Direct and indirect transfer of SRB data in P-GRADE

Figure 7. P-GRADE workflow using SRB, GridFTP, SRM and local data resources

4. Conclusions and Further Work

The P-GRADE Grid portal is a high-level integrated application hosting
environment that assists the user-friendly creation and execution of workflow
based Grid applications spanning multiple Grids. The current portal supports
access to local files, SRM-based EGEE logical file systems and GridFTP file
collections as inputs and outputs of workflow components. The aim of our
research is to extend these capabilities to other widely used distributed Grid
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data management solutions. As a first reference implementation the P-GRADE
portal workflow engine has been extended with SRB support capabilities. SRB
is one of the most widely used distributed data management systems by the
Grid community, and this way the integration is potentially a huge interest to
both SRB and P-GRADE portal user groups.

The described solution will be put into production level operation at the be-
ginning of 2008 on the NGS P-GRADE portal [19]. On the other hand, further
Grid data management solutions are also analysed and considered for integra-
tion. An OGSA-DAI browser portlet has already been implemented and added
to the P-GRADE portal, and the workflow level OGSA-DAI integration is also
work in progress. These new additions to P-GRADE will provide interoperation
of all widely used Grid data and file storage systems at the level of workflows.
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Abstract

Desktop grids use the free resources in Intranet and Internet environments
for large-scale computation and storage. While desktop grids offer tremendous
computational power and a high return on investment, one critical issue is the
validation of results returned by participating hosts that are volatile, anonymous,
and potentially malicious. We conduct a benefit analysis of a mechanism for
result validation that we proposed recently for the detection of errors in long-
running applications. This mechanism is based on using the digest of intermediate
checkpoints, and we show in theory and simulation that the relative benefit of this
method compared to the state-of-the-art is as high as 45%.
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1. Introduction

For over a decade, one of the largest distributed computing platforms in the
world have been desktop grids, which use the idle computing power and free
storage of a large set of networked (and often shared) hosts to support large-
scale applications [14, 13–1]. Desktop grids are an extremely attractive platform
because they offer huge computational power at relatively low cost. Currently,
many desktop grid projects, such as SETI@home [14], FOLDING@home [13],
and EINSTEIN@home [1], use TeraFLOPS of computing power of hundreds of
thousands of desktop PC’s to execute large, high-throughput applications from
a variety of scientific domains, including computational biology, astronomy,
and physics.

Despite the huge return-on-investment that desktop grids offer, one critical
issue is the correctness of results returned from volatile, anonymous, and
potentially malicious hosts. A number of different factors can influence the
correctness of the results returned from the desktop grid worker to the server.
These factors can be due to computational errors (for example, overclocking
of the CPU or incorrectly modified application binaries [15]) or input/output
errors (for example, a machine crash during an out-of-order flush of in-memory
blocks [11]).

Given the risk of erroneous results, effective error detection mechanisms
are essential. In this paper, we conduct a benefit analysis of a mechanism that
we proposed recently for the detection of errors in long-running applications.
This mechanisms uses the digest of intermediate checkpoints to accelerate
the detection of result errors, especially for long running applications. A
number of projects such as climateprediction.net, climatechange, and
seasonalattribution have workunits whose execution span months [6],
and we believe early error detection for these projects would be useful. We
present theoretical upper and lower bounds on the benefits of our mechanism
for heterogeneous and volatile resources, using error rates derived from a real
desktop grid system. Finally, we present simulation results that loosen the
assumptions of our theoretical analysis, but nevertheless confirm our theoretical
results.

The paper is structured as follows. In Section 2, we describe how our work
in this paper relates to previous research. Then, in Section 3, we detail our
mechanism for error detection, give theoretical upper and lower bounds on its
benefits, and confirm our analysis with simulation results. Finally, in Section 4,
we summarize our conclusions and describe future research directions.

2. Related Work

In [4], we presented the theoretical analysis and simulation results of the
same error detection mechanism presented here, but there were two main
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limitations. First, the previous analysis was conducted using hypothetical error
rates instead of error rates obtained empirically from a real project. In fact,
our previous work assumed error rates that were orders of magnitude higher
than the rates we determined in this study. Nevertheless, we show here that

substantial benefits can still be achieved using this novel technique with real

but relatively lower error rates. Second, the theoretical analysis previously
conducted made the assumption that checkpoints occur simultaneously across
hosts at constant intervals. For reasons that we detail in the next section, this
is an unrealistic assumption in volatile and heterogeneous desktop grids. We

loosen the assumption to consider variable checkpointing intervals, and give

new theoretical upper and lower bounds on the benefits of this technique using

a mathematical approach based on order statistics.

3. Comparing Intermediate Checkpoints for
Long-Running Workunits

In this section, we present novel benefit analysis of a mechanism for error
detection that we proposed recently in [4]. This mechanism is based on check-
pointing and replication, and is well-suited for long-running workunits. The
technique involves comparing intermediate checkpoint digests (provided for ex-
ample by the MD5 [12] family of algorithms) of redundant instances of the same
task. (Note that often computations occupy a large space in memory often near
the 100MB range [6] and/or sending a small, intermediate result for comparison
may not be possible nor efficient.) If differences are found, the conclusion is
that at least one task’s execution is wrong. In contrast to the simple redundancy
mechanism, where diverging computations can only be detected after a majority
of tasks have completed, intermediate checkpoint comparison allows for earlier
and more precise detection of errors, since execution divergence can be spotted
at the next checkpoint following any error. This allows one to take proactive
and corrective measures without having to wait for the completion of the tasks,
and it allows for faster task completion, since faulty tasks can immediately be
rescheduled.

We assume the following. First, if the digests differ from the correct digest,
then the divergent digest differs from all other digests (including other divergent
ones). Second, the errors occur independently of one another. Finally, each
task is checkpointed locally and periodically (as is done in several existing
desktop grid systems [3, 15]). (Note that later we relax these assumptions in
our simulations.) With respect to CPU time, the application could conduct local
checkpointing periodically (for example, every 10 minutes). However, with
respect to wall-clock time, the time between checkpoints is random because of
non-deterministic events that could delay checkpointing such as a host being
powered off, or the worker being suspended or killed because of user activity [8].
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Parameter Definition

W Benefit in time of intermediate check-
pointing relative to the state-of-the-art
method

Tk,j Time from start of workunit to the time
of checkpointing segment j on worker k

R Number of workers on which a check-
pointed task is replicated

c Number of segments or equivalently
checkpoints per task

Sk,g Time from start of segment g to the time
of checkpointing segment g on worker
k

p, v p is the probability of getting an error
within a segment on any host. v = 1−p

X Random variable distributed geometri-
cally with parameters p and v represent-
ing the number of task segments before
an error occurs

Table 1. Parameter Definitions.

Thus, we model the time between checkpoints as a random variable. In
particular, each checkpoint delineates the end of a task segment to create a total
of c segments. Let R be the number of workers on which a checkpointed task is
replicated (see Table 1). Let Sk,g be a random variable that represents the time
to checkpoint the current segment g, beginning from the last checkpoint (or start
of the task, in the case of the first checkpoint), on worker k where 1 ≤ g ≤ c,
and 1 ≤ k ≤ R.

Let Tk,j be a random variable that represents the amount of time elapsed
since the start of the task up to the checkpoint time of segment j, on worker k.
Specifically, Tk,j =

∑j
g=1 Sk,g (see Figure 1 for an example).

We assume that Sk,g is distributed exponentially with parameter λ across all
workers. While a number of previous studies have characterized the distribution
of availability intervals on enterprise desktop resources (for example, [8]), it is
unclear how these periods of availability relate to the time of checkpointing a
segment on Internet environments. Thus, for future work, we will verify our
assumption using resource traces, for example, those currently being collected
on Internet desktop environments [10].

Given that Sk,g is distributed exponentially, Tk,j has a gamma distribution
with parameters α = j and β = 1/λ.
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Figure 1. Example of Intermediate Checkpointing

The time to validate the ith segment is given by T(R),i, which is the Rth order
statistic of the set T1,i, ..., TR,i. That is, T(R),i represents the maximum time to
complete segment i among all R workers.

The expected gain E[W ] for using intermediate checkpoints compared to
state-of-the-art methods where the comparison is done at the end of the workunit
is then given by:

E[W ] = E[T(R),c − T(R),i] (1)

where 1 ≤ i ≤ c.
Let X be the number of trials, i.e., the segment in which an error occurs on

any of the hosts, and let X have a geometric distribution with parameters p and
v, where p is the probability of getting an error within a segment in any of the
hosts, and v = 1 − p.

From [5], a lower bound on the expectation of the maximum of a set of
random variables is the maximum of the expected value of each random variable
in the set. Moreover, Hartley and David [7] report that an upper bound for the
expectation of the maximum is µ + σ × (n − 1)/

√
2n − 1, given a set of n

independent random variables with identical means and variances (µ, σ2).
In Figure 2, we show the upper and lower bounds on the benefit E[W ]

relative to the upper and lower bounds of the expected maximum time E[T(R),c]
for checkpointing at the end of the task. In particular, in Figure 2(a), the number
of checkpoints c is fixed to 1000, and p varies between [0.0005, 0.0015]. In
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(a) Varying probability of error (b) Varying checkpoint frequency

Figure 2. Benefits of intermediate checkpointing

Figure 2(b), the probability of error within each segment p is fixed at 0.001, and
c varies between [500, 1000]. (The range of error rates are based upon those
observed in a real desktop grid system [16]. In that study, the authors checked
syntactically and semantically the results returned from about 600 hosts in an
Internet-wide desktop grids to determine error rates of hosts. )

We observe potentially significant gains even for small error rates. For ex-
ample, in Figure 2(a), we find that if the probability of error p is 0.001 and the
number of checkpoints per task c is 1000, then the potential benefit of intermedi-
ate checkpointing is between ∼ 30 − 45%. While 1000 checkpoints may seem
abnormally large, if we assume a task checkpoints every 10 minutes a thousand
times, this equates to a 7-day workunit. (This is a reasonable checkpoint fre-
quency and workunit length as the frequency in real projects EINSTEIN@home,
PREDICTOR@Home, and SIMAP is on the order of minutes [2] and execution
is on the order of days or months [6].) In Figure 2(b), we find that if the number
of checkpoints is 1050 (and the probability of error is 0.001), then the potential
benefit of intermediate checkpointing is between ∼ 30 − 45%.

We then confirmed and extended the theoretical results through simulation.
We assign a number of tasks to a set of workers. Whenever a worker computes
a checkpoint, it randomly determines whether that computation is wrong or
correct. Once a checkpoint is wrong, all the remaining checkpoints from that
worker are also considered as wrong. In our experiments, the time that a worker
needed to compute a checkpoint was given by an exponential distribution. We
chose an arbitrary average checkpoint time (as it does not impact the relative

benefit of our technique). We varied the number of checkpoints of each task
and the probability of error in each checkpoint. (We used a constant value for
the probability of error. We also tried random variables (truncated Gaussian,
exponential and others), with little if any impact on the outcome of the trials.)
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In Figures 2(a) and 2(b), we show the results of our experiments for the
same range of parameters as used for the theoretical analysis. The curve of the
observed benefit is the average of 300 trials.

Our results show that the there is a considerable benefit in comparing in-
termediate checkpoints, especially for long-running workunits. Even for very
small probabilities of error, which correspond to real values observed in real
systems, the time savings can amount to 20%-45% of the time correspond-
ing to state-of-the-art solutions. (One potential limitation of this method is
scalability of receiving the high-frequency digest messages if digests are sent
centrally to a “supervisor” for comparison. We are currently working on secure
load-balancing techniques via distributed hash tables (DHT) to remove this
limitation, and we will report on this in future work.)

4. Conclusion

We showed the benefits of a recently proposed method for accelerating error
detection on large-scale and volatile resources. In particular, we gave novel
theoretical analysis for our proposed method based on the digest of intermediate
checkpoints, where each task segment can take a variable amount of time due to
host volatility or heterogeneity, for example. For error rates often found in real
systems, we found that the time savings bounded by theoretical analysis can
often range from 20% to 45%. We then verified our theoretical bounds on the
potential benefit through simulation experiments, while loosening assumptions
of the analysis. We find that our simulation experiments validate our theoretical
analysis, even for various distributions of the probability of error. For future
work, we will develop scalable ways to collect and compare checkpoint digests,
for example using mechanisms based on DHT’s.
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Abstract The objective of Grid computing is to make processing power as accessible and
easy to use as electricity and water. The last decade has seen an unprecedented
growth in Grid infrastructures which nowadays enables large-scale deployment
of applications in the scientific computation domain. One of the main challenges
in realizing the full potential of Grids is making these systems dependable.

In this paper we present FailRank, a novel framework for integrating and
ranking information sources that characterize failures in a grid system. After the
failing sites have been ranked, these can be eliminated from the job scheduling
resource pool yielding in that way a more predictable and dependable infrastruc-
ture. We also present the tools we developed towards evaluating the FailRank
framework. In particular, we present the FailBase Repository which is a 38GB
corpus of state information that characterizes the EGEE Grid for one month in
2007. Such a corpus paves the way for the community to systematically uncover
new, previously unknown patterns and rules between the multitudes of parameters
that can contribute to failures in a Grid environment. Additionally, we present an
experimental evaluation study of the FailRank system over 30 days which shows
that our framework identifies failures in 91% of the cases.

Keywords: failure monitoring, FailRank, FailBase repository.
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1. Introduction

Grids have emerged as wide-scale, distributed infrastructures that comprise
heterogeneous computing and storage resources, operating over open standards
and distributed administration control [10–11]. Grids are quickly gaining popu-
larity, especially in the scientific sector, where projects like EGEE (Enabling

Grids for E-sciencE) [6], TeraGrid [20] and Open Science Grid [18] , provide
the infrastructure that accommodates large experiments with thousands of sci-
entists, tens of thousands of computers, trillions of commands per second and
petabytes of storage [6, 20, 18]. At the time of writing, EGEE assembles over
250 sites around the world with more than 30,000 CPUs and 5PB of storage,
supporting over 100 Virtual Organizations.

While the aforementioned discussion shows that Grid Computing will play a
vital role in many different scientific domains, realizing its full potential will
require to make these infrastructures dependable. As a measure of depend-
ability of grids we use the ratio of successfully fulfilled job requests over the
total number of jobs submitted to the resource brokers of a grid infrastruc-
ture. The FlexX and Autodock data challenges of the WISDOM [25] project,
conducted in August 2005, have shown that only 32% and 57% of the jobs com-
pleted successfully (with an "OK" status). Additionally, our group conducted
a nine-month characterization of the South-Eastern-Europe resource broker
(rb101.grid.ucy.ac.cy) in [4] and showed that only 48% of the submitted
jobs completed successfully. Consequently, the dependability of large-scale
grids needs to be improved substantially.

Detecting and managing failures is an important step toward the goal of
a dependable grid. Currently, this is an extremely complex task that relies
on over-provisioning of resources, ad-hoc monitoring and user intervention.
Adapting ideas from other contexts such as cluster computing [16], Internet
services [14–15] and software systems [17] seems also difficult due to the
intrinsic characteristics of grid environments. Firstly, a grid system is not
administered centrally; thus it is hard to access the remote sites in order to
monitor failures. Moreover we cannot easily encapsulate failure feedback
mechanisms in the application logic of each individual grid software, as the
grid is an amalgam of pre-existing software libraries, services and components
with no centralized control. Secondly, these systems are extremely large; thus,
it is difficult to acquire and analyze failure feedback at a fine granularity. Lastly,
identifying the overall state of the system and excluding the sites with the
highest potential for causing failures from the job scheduling process, can be
much more efficient than identifying many individual failures. Of course the
latter information will be essential to identify the root cause of a failure [15], but
this operation can be performed in a offline phase, and thus it is complementary
to our framework.
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In the FailRank architecture, feedback sources (i.e., websites, representative
low-level measurements, data from the Information Index, etc.) are continuously
coalesced into a representative array of numeric vectors, the FailShot Matrix

(FSM). FSM is then continuously ranked in order to identify the K sites with the
highest potential to feature some failure. This allows the system to automatically
exclude the respective sites from the job scheduling process.

The advantages of our approach are summarized as follows: (i) FailRank is a
simple yet powerful framework to integrate and quantify the multi-dimensional
parameters that affect failures in a grid system; (ii) our system is tunable,
allowing system administrators to drive the ranking process through user-defined
ranking functions; (iii) we eliminate the need for human intervention, thus
our approach gives space for automated exploitation of the extracted failure
semantics; (iv) we expect that the FailRank logic will be implemented as a filter
outside the Grid job scheduler (i.e., Resource Broker or Workload Management
System), thus imposing minimum changes to the Grid infrastructure.

2. Monitoring Failures in a Grid Environment

In this subsection we overview typical failure feedback sources provided in
a grid environment. These sources contain information that is utilized by our
system in order to deduct, in an a priori manner, the failing sites. Our discussion
is in the context of the EGEE infrastructure, but similar tools and sources exist
in other grids [20, 18].

Meta-information sources: Several methods for detecting failures have been
deployed so far. Examples include (for a detailed description see [22]): (i)
Information Index Queries: these are performed on the Information Service
and enable the extraction of fine-grained information regarding the complete
status of a grid site; (ii) Service Availability Monitoring (SAM) [26]: a reporting
web site that is maintained for publishing periodic test-job results for all sites of
the infrastructure; (iii) Grid statistics: provided by services such as GStat [12];
(iv) Network Tomography Data: these can be obtained by actively pinging and
tracerouting other hosts in order to obtain delay, loss and topological structure
information. Network tomography enables the extraction of network-related
failures; (v) Global Grid User Support (GGUS) ticketing system [7]: system
administrators use this system to report component failures as well as needed
updates for sites. Such tickets are typically opened due to errors appearing in
the SAM reports; (vi) Core Infrastructure Center (CIC) broadcasts [3]: allow
site managers to report site downtime events to all affected parties through a
web-based interface; and (vii) Machine log-files: administrators can use these
files to extract error information that is automatically maintained by each grid
node.
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Active benchmarking: Deploying a number of lower level probes to the re-
mote sites is another direction towards the extraction of meaningful failure
semantics. In particular, one can utilize tools such as GridBench [21, 23], the
Grid Assessment Probes [2] and DiPerF [5], in order to determine in real time
the value of certain low level and application-level failure semantics that can
not be furnished by the meta-information sources. For example, GridBench
provides a corpus of over 20 benchmarks that can be used to evaluate and rank
the performance of Grid sites and individual Grid nodes.

Both the Meta-Information Sources and the Active Benchmarking approaches
have a major drawback: their operation relies heavily on human intervention.
As Grid infrastructures become larger, human intervention becomes less feasible
and efficient. As we would like Grid Dependability to be scalable, our proposed
architecture does not rely on human intervention but instead provides the means
for acquiring and analyzing the data from the above resources in an automated

manner.

3. The FailRank System

In this section we describe the underlying structure that supports the FailRank
system. We start out with an architecture overview and then proceed with basic
definitions in order to formalize our description. We follow with the description
of the failure ranking mechanism deployed in FailRank.

3.1 Architecture Overview

The FailRank architecture (see Figure 1), consists of four major components:
(i) a FailShot Matrix (FSM), which is a compact representation of the parameters
that contribute to failures, as these are furnished by the feedback sources; (ii)
a temporal sequence of FSMs defines an FSM timeseries which is stored on
local disk; (iii) a Top-K Ranking Module which continuously ranks the FSM
matrix and identifies the K sites with the highest potential to run into a failure
using a user defined scoring function; and (iv) a set of data exploration tools
which allow the extraction of failure trends, similarities, enable learning and
prediction. FailRank is tunable because it allows system administrators and
domain experts to drive the ranking process through the provisioning of custom
scoring functions.

3.2 Definitions and System Model

Definition (FailShot Matrix (FSM)): Let S denote a set of n grid sites (i.e.
S = {s1, s2, ..., sn}). Also assume that each element in S is characterized by
a set of m attributes (i.e. A = {a1, a2, ..., am}). These attributes are obtained
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Figure 1. The FailRank System Architecture: Feedback sources are continuously coalesced
into a representative array of numeric vectors, the FailShot Matrix (FSM). FSM is then con-
tinuously ranked in order to identify the K sites with the highest potential to feature some
failure.

Site CPU DISK QUEUE NET FAIL

s1=“USC-LCG2” 0.63 0.61 0.01 0.28 0.35
s2=“TAU-LCG2” 0.66 0.91 0.92 0.56 0.58
s3=“ELTE” 0.48 0.01 0.16 0.56 0.54
s4=“UCL-CCC” 0.99 0.90 0.75 0.74 0.67
s5=“CY01-KIMON” 0.44 0.07 0.70 0.19 0.67

Table 1. The FailShot Matrix (FSM) coalesces the failure information, available in a variety of
formats and sources, into a representative array of numeric vectors.

by the feedback sources described in Section 2. The rows in Table 1 represent
the sites while the columns represent the respective attributes. The jth attribute
of the ith site is denoted as sij . The j-th attribute specifies a rating (or score)
which characterizes some grid site si (i ≤ n) at a given time moment. These
ratings are extracted by custom-implemented parsers, which map the respective
information to real numerics in the range [0..1] (1 denotes a higher possibility
towards failure). The m × n table of scores defines the FailShot Matrix (FSM),
while a Site Vector is any of the n rows of FSM.

A graphical illustration for some synthetic example is given in Table 1.
The figure shows five sites {s1, ..., s5} where each site is characterized by
five attributes: CPU (% of cpu units utilized), DISK (% of storage occupied),
QUEUE (% of job queue occupied), NET (% of dropped network packets) and
FAIL (% of jobs that don’t complete with an "OK" status).

Definition (FSM Timeseries): A temporal sequence of l FailShot Matrices
defines an FSM Timeseries of order l.

Keeping a history of the failure state for various prior time instances is
important as it enables the automatic post-analysis of the dimensions that
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contributed to a given failure, enables the prediction of failures and others.
It is important to notice that the FSM timeseries can be stored incrementally
in order to reduce the amount of storage required to keep the matrix on disk.
Nevertheless, even the most naive storage plan of storing each FSM in its
entirety, is still much more storage efficient than keeping the raw html/text
sources provided by the feedback sources. In constructing FailBase, described
in Section 4, we found that the FSM representation saves us approximately
350GB of storage per month.

3.3 The Ranking Module

Although the snapshot of site vectors in FSM greatly simplifies the repre-
sentation of information coming from different sources, observing individually
hundreds of parameters in real time in order to identify the sites that are running
into trouble is still a difficult task. For example a typical LDAP query to the
Grid Information Service returns around 200 attributes. Monitoring these pa-
rameters in separation is a cumbersome process that is very expensive in terms
of human resources, can rarely lead to any sort of a priori decision-making and
is extremely prone to mistakes and human omissions. Instead, automatically
deducting the sites with the highest potential to suffer from failures is much
more practical and useful. Since this information will be manipulated with high
frequencies, we focus on computing the K sites with the highest potential to
suffer from failures rather than finding all of them (K is a user-defined parame-
ter). Therefore we don’t have to manipulate the whole universe of answers but
only the K most important answers, quickly and efficiently. The answer will
allow the Resource Broker to automatically and dynamically divert job submis-
sions away from sites running into problems as well as notify administrators in
advance (compared to SAM & tickets) to take preventive measures for the sites
more prone to failures.

Scoring Function: In order to rank sites we utilize some aggregate scoring
function which is provided by the user (or system administrator). For ease of
exposition we use, similarly to [1], the function:

Score(si) =
m

∑

j=1

wj ∗ sij (1)

where sij denotes the score for the jth attribute of the ith site and wj (wj > 0)
a weight factor which calibrates the significance of each attribute according to
the user preferences. For example if the CPU load is more significant than the
DISK load, then the former parameter is given a higher weight. Should we need
to capture more complex interactions between different dimensions of FSM we
could construct, with the help of a domain expert, a custom scoring function or
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CPU DISK QUEUE NET FAIL RANK

s4, .99 s2, .91 s2, .92 s4, .74 s4, .67 s4, 4.05
s2, .66 s4, .90 s4, .75 s2, .56 s5, .67 s2, 3.63
s1, .63 s1, .61 s5, .70 s3, .56 s2, .58 s5, 2.07
s3, .48 s5, .07 s3, .16 s1, .28 s3, .54 s1, 1.88
s5, .44 s3, .01 s1, .01 s5, .19 s1, .35 s3, 1.75

Table 2. The Sorted (by column score) FSM (Sorted-FSM) is utilized by the top-K engine to
continuously identify K highest ranked answers, where K is a user parameter.

we could train such a function automatically using historic information. It is
expected that the scoring function will be much more complex in a real setting
(e.g. a linear combination of averages over n′ correlated attributes, where
n′ << n) and we are currently working towards evaluating these alternatives.

Example: In order to stimulate our description, consider the example of Ta-
ble 1. In order to infer the overall rank for two site vectors, such as s2 =
{0.66, 0.91, 0.92, 0.56, 0.58} and s4 = {0.99, 0.90, 0.75, 0.74, 0.67}, we ap-
ply the scoring function with wj = 1 (i.e. all dimensions are of equal impor-
tance), and find that s2 = 3.63 and s4 = 4.05.

In order to minimize the computation of the scoring function, which poten-
tially has to join hundreds of columns in each run, we will utilize the Threshold

Algorithm (TA) [9]. TA is one of the most widely recognized algorithms for
finding the K highest rank answers in database and middleware scenarios. Sup-
pose that we are interested in finding the K = 1 objects with the highest score.
TA starts out by performing a parallel access to the n lists of the Sorted-FSM
(see Table 2). While an object si is seen, TA performs a random access to the
other lists to find the exact score for si using the given scoring function. In
our working example the exact score would be computed for the two objects
in the first row (i.e. s4 = 4.05 and s2 = 3.63) since sorted access is executed
on a row-at-a-time basis. It then computes a threshold value τ as the sum of
all scores in the first row (i.e. τ = .99 + .91 + .92 + .74 + .67 = 4.23). Since
τ is larger than both scores of s4 and s2, the TA algorithm performs another
iteration in which the threshold τ is refined as the sum of scores across the
second row (i.e. τ = 3.54). It also computes the exact score for s5 = 2.07 (the
only unresolved object in the second row). Now the algorithm finds at least
K=1 objects above the threshold (i.e. s4≥τ and s2≥τ ) and therefore terminates.
It is easy to prove that no other object can have a score above s4 thus the score
function calculation can be omitted for these objects.

4. The EGEE FailBase Repository

In the previous section we outlined the main components of the FailRank
architecture. In this section we present the tools we developed in order to
evaluate the proposed architecture. In particular, we present the FailBase
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Repository which is a 38GB corpus of state information that characterizes
the EGEE Grid for one month in 2007. Such a corpus paves the way for the
community to systematically uncover new, previously unknown patterns and
rules between the multitudes of parameters that can contribute to failures in a
grid environment.

4.1 Overview

FailBase currently contains 32 days of monitoring data obtained from tests
executed on the EGEE Grid Infrastructure between 16/3/2007 and 17/4/2007.
The trace was collected at the High Performance Computing systems Lab
(HPCL) at the University of Cyprus. We utilized a dual Xeon 2.4GHz CPU
machine with 1GB of RAM connected to the European Academic Network
(GEANT) at 155Mbps.

The trace maintains information for 2,565 Computing Element (CE) queues.
It is important to note that resource brokers perform the matchmaking between
the requests and the available and appropriate queues at the CE-queue granular-
ity rather than on individual nodes. Thus, we focus on characterizing failures
at the same granularity as well. Each CE-queue is stored in an individual
folder that currently contains 72 attributes (i.e., files) and each file charac-
terizes the CE-queue it is stored in. For example, ce101.grid.ucy.ac.cy-
jobmanager-lcgpbs-atlas is the directory that contains measurements spe-
cific to the ATLAS experiment job queue that is maintained on the Computing
Element ce101.grid.ucy.ac.cy.

Each of the files in the CE-queue folders can be thought of as a timeseries
(i.e., a sequence of [timestamp,value] pairs) for the given attribute using a time
step of approximately 1 to 10 minutes (varies according to the type of source).
We currently share the Failbase repository with the researchers of our group
using the UNIX filesystem interface which maintains openness and portability.
In the future we have plans to store the information in a relational database on
the EGEE grid in order to allow researchers from other institutes to access and
manipulate the stored information using the expressive power of the Structured
Query Language (SQL).

4.2 Meta-information Sources

We shall next describe the adopted methodology for acquiring the 72 failure-
related attributes from the respective meta-information sources:

(i) Service Availability Monitoring (SAM): We obtained approximately 260MB
of data in raw html form (one html file for each CE) using the UNIX system
utility curl. We then processed these pages using a set of perl scripts and
generated 18 attributes. These attributes contain information such as the version
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number of the middleware running on the CE, results of various replica manager
tests and results from test job submissions.

(ii) Information Index Queries (BDII): We used the ldapsearch system utility
tool to perform approximately 2 million LDAP queries on the Information Index
hosted on bdii101.grid.ucy.ac.cy. We then performed a projection in order to
extract another 15 failure-related attributes. This yielded attributes such as the
number of free CPUs and the maximum number of running and waiting jobs
for each respective CE-queue.

(iii) Grid Statistics (GStat): We downloaded, again using curl, and parsed data
files from the monitoring website of Academia Sinica. From these files we
generated 19 attributes for each given center and then replicated these attributes
to all the respective queues. The 19 attributes contain information such as
the geographical region of a Resource Center, the available storage space on
the Storage Element used by a particular CE, and results from various tests
concerning BDII hosts.

(iv) Host sensor data (GridICE): We performed over 500,000 LDAP queries
on every EGEE Computing Element host that published GridICE [8] sensor
data (i.e., on ≈184 computing element hosts). The interval between consecutive
probes was 10 minutes. We were able to extract 18 attributes of interest that
includes information such as the total and available sizes of RAM, virtual
memory and filesystem-specific information.

(v) Network Tomography Data (SmokePing): We obtained a 313MB snapshot
of the gPing database from ICS-FORTH (Greece) for the studied period. The
database contains network monitoring data for all the EGEE sites. From this
collection we measured the average round-trip-time (RTT) and the packet loss
rate relevant to each South East Europe CE (see Figure 2) which therefore
yielded 2 additional attributes. In order to make the information consistent
with the FailBase repository schema, we replicated files from the CE-level to
CE-queue-level using a one-to-one mapping function.

5. Experimental Evaluation

In this section we describe an experimental study of the FailRank framework
as well as our methodology.

5.1 Methodology

We have implemented a trace-driven tool in GNU C++ which processes the
Failbase repository and then simulates the execution of the FailRank framework.
In particular, we replay the trace in our simulator and at each timestamp we iden-
tify the K sites that might fail to respond. We will denote these (timestamp,
siteID) tuples as the Identified Set (Iset). The Iset is constructed by select-
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Figure 2. Round-Trip-Time (left) and Packet Loss (right) for the CE-queue
ce01.kallisto.hellasgrid.gr-jobmanager-pbs-ops. These attributes are two of the
72 attributes maintained for the 2,565 CE-queues in the Failbase Repository.

ing the K highest-ranked answers from the execution of the scoring function
described in Section 3.3 with equal weights on the FSM table.

Note the resource broker can compute the Iset directly from the FSM matrix,
before the timestamp at which the actual error happens, thus such an approach
provides an a priori failure detection mechanism. In order to assess this claim
and validate that the Iset corresponds to the actual sites that have failed to
respond, we need a set of (timestamp, siteID) tuples at which real site failures
happened. We shall denote such a set as the Real Set (Rset) and we construct it
by combining the 18 attributes provided by the SAM service (described in 4.2)
using the scoring function described in Section 3.3. That yields an average
score per site for every timestamp. For each timestamp, we then again choose
the K sites which have the highest score. We define the penalty, for not finding
the correct sites at timestamp i, using a set-theoretic notation as follows:

Penaltyi = |Rset − Iset| (2)

where |Rset| = |Iset| = K and the penalty at each timestamp i is defined as
the cardinality of the set difference Rset − Iset. In our experimentation, we
shall also use the Aggregate Penalty (i.e., A =

∑timestamps
i=1 Penaltyi), which

provides a measure of overall efficiency for the Iset in all timestamps.
Having identified the correct Iset sites, our objective is to blacklist these sites

and exclude them from the job scheduling process, decreasing in that way the
number of failures.

5.2 Evaluating FailRank

In this subsection we evaluate the efficiency of the FailRank framework in
identifying the sites that will fail. In particular, we obtain the Iset using two
alternative strategies: i) FailRank Selection, which utilizes the FSM matrix and
selects the K = 20 sites (≈ 10% of all sites) that maximize the scoring function
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Figure 3. FailRank selection vs. Random selection: FailRank identifies the site that have
failed as opposed to Random which always identifies very few of the K=20 sites.

of Section 3.3 with equal weights; and ii) Random Selection, which does not
utilize the FSM matrix and simply selects the K = 20 sites at random.

We then measure the respective penalty using our provided definition. Note
that for this experiment we utilize a subset of the Failbase repository (i.e., 197
OPS queues monitored for 32 days) for which we had the largest number of
available attributes. We also apply a spline interpolation smoothing between
consecutive time points in our graph in order to facilitate presentation.

Figure 3 illustrates that FailRank selection always has an extremely low
penalty (i.e. on average 2.14±1.41 with A = 92, 596) while Random selection
is always very close to 20 (i.e. on average 18.19± 3.5 with A = 786, 148). We
can conclude that FailRank misses the correct sites in only 9% of the cases while
Random misses the correct results in 91% of the cases. Another observation is
at time instances 6000, 16000 and 39000, both selection curves drop to zero.
This is attributed to the fact that our meta-information trace contained missing
values at the given points (i.e., Iset = Rset = ∅). One final observation is
that the Random selection curve is in some cases above 20. This is attributed
to the fact that the cardinality of the Rset might be bigger than K, instead of
equal to K, in certain cases. This is explained as follows: to construct the
Rset we identified the K highest ranked tuples for each timestamp. In some
cases the Kth tuple has an equal score to the Kth + 1 tuple (or maybe even
the Kth + 2 tuples, etc.). As a result, |Rset| might be bigger than |Iset| which
consequently might yield a penalty larger than K (e.g. consider the case where
Rset ∩ Iset = ∅).
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6. Conclusions & Future Work

In this paper we introduce FailRank, a novel framework for integrating and
ranking information sources that characterize failures in a grid system. This
perspective is to our knowledge new and fits well the computation model of
grid infrastructures. Another advantage is that FailRank streamlines the very
complex task of monitoring large-scale distributed resources in an automated
manner. In the future we plan to provide more elaborate ranking algorithms
and perform an in-depth assessment of our prototype system under development.
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Abstract In this paper we present a fault-injector tool, named JAFL (Java Fault Loader),
that was developed with the target of testing the fault-tolerance mechanisms of
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1. Introduction

Before the deployment of Grid applications or any Grid middleware it is
necessary to be sure that the software is robust and reliable. The software
modules that are most difficult to be tested are the ones related with failure-
detection and recovery. To exercise these modules we propose the use of
synthetic fault-injection. By using fault injection techniques we will be able to
reproduce the occurrence of failures in a system and measure the latency and
coverage of the built-in fault-detection mechanisms.

To reproduce valid failures, the fault injector tools must be developed based
on todays most common failures. In surveys such as [6] or [7] we can see that
the main causes of failure are divided in four big groups: software failures,
operator errors, hardware failures and security violations. Since hardware
failures and security violation are out of the scope of this paper, we will only
discuss software failures and operator error issues, which, in their turn, account
for 80% of system failures (software (40%), operator error (40%)).

After deeply analyzing these two groups (software and operator errors) we
realized that operator errors occur mainly during system maintenance, software
upgrades and system integration while the software failures normally occur due
to system overload, resource exhaustion and complex fault-recovery routines.
Since these are the most common causes of system failures, our work will be
completely focused on them.

In this paper we present a fault-injector tool, named JAFL (Java Fault Loader)
that was developed based on the previous issues and with the target of testing
the fault-tolerance mechanisms of Grid and Web applications. Furthermore, we
can say that this fault-injector was developed as an aditional package of the
QUAKE benchmarking tool [28]. In the next sections we will describe JAFL
internals, we will expose some of the most common fault detection mechanisms
and we will present some results that were collected from experiments where
we used both our injector and some fault detection mechanisms. In the end
of this paper we expect to prove that our fault injector can be helpful in the
evaluation of the fault-detection mechanisms used in Web and Grid systems.

2. Fault Injector

There are three categories of fault injectors: hardware implemented, simula-
tor based and software implemented [1]. Our fault injector is included in the
later category.

The most known software fault injection tools targeted for Grid systems are:
Cecium [8], Doctor [9], Orchestra [10], NFTAPE [11], LOKI [12], Mendosus
[13], FAIL-FCI [14] and OGSA [15]. Some of them are able to inject real
failures in the system, applications or network while the others are simple
simulator-based injectors.

While most of the software injection tools only consider the injection at low
level (with the objective of emulating hardware failures such as processor or
memory faults [2, 3]) or at software-level (with the objective of corrupting code
or data [4, 5]), our fault-injector was based on a slightly different approach.
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Our goal is more targeted to the synthetic consumption of JVM and operating
system resources and to the injection of human-operator errors. As we have said
previously, these types of failures represent a considerable amount of failures
that occur in real systems. Since our objective is to reproduce the most common
failures, we developed our fault injector with the ability to inject the following
faults: Memory consumption; CPU consumption; Thread consumption, Disk
Storage consumption, I/O consumption, Database connections consumption,
File handler consumption, Exception Throwing, Database Table Deletion and
Database Table Lock. Later in this section we will explain each one of them.

2.1 Architecture

Figure 1. JAFL Architecture

Our fault injector, as shown in Figure 1, is composed by 2 main modules: the
Controller and the Injector.

The Controller is responsible for reading a configuration file where all the
configurations for the next fault injection are stored. In this configuration file
the user can define the fault load, the specific parameters for that fault load, the
start time, the interval between injections and the end time (it can be infinite) of
the next fault injection.

The Injector module has two main functions: receive the fault load parame-
ters from the Controller module and deliver them to the respective fault load
sub-module. There are ten sub-modules in the Injector module, each one repre-
senting one specific fault:
Memory Consumption: With this sub-module we are able to consume, along
the time, a given amount of memory in the JVM. If we don’t define an end point
it will consume all the memory and throw an Out Of Memory Error.
CPU Consumption: By using various threads to do some hard calculations,
this sub-module can increase substantially the CPU Load .
Thread Consumption: With this fault we are able to create various threads
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along the time and wait to see how the system responds.
Disk Storage Consumption: We can use this kind of fault to see how the
system handle the lack of disk space. If we don’t define an end point it will
consume all the disk space.
I/O Consumption: This sub-module is responsible for doing read/write opera-
tions on our system. If we want to burst our system we can check our maximum
read/write speed and configure the fault for those values.
Database Connections Consumption: With this fault we can consume vari-
ous database connections and check whether our applications behave with the
connection pool being filled up.
File Handler Consumption: By using this fault we can consume the file de-
scriptors which are available for the user running the Java application.
Exception Throwing: This sub-module is able to throw some exceptions. We
implemented this sub-module because after the occurrence of an exception the
application can change its behavior.
Database Table Lock: With this sub-module we can emulate some database
lock problems that occur, most of the times, during maintenance operations.
Database Table Deletion: This fault simulates a very common operator error
which normally occurs when an erroneous backup is used to restore a database.

2.2 Usage

As JAFL is written in Java, it can be used in the following ways:

Deployed in a Web/Grid container using the Java Technology

Integrated with standalone applications

Run as a standalone application

In figure 2 we can see a sample scenario where JAFL can be used in the 3
ways. In the frontend server, JAFL is used to actively consume the Web/Grid
container resources; in "node b" it is used to perturb a simple application running
on that node and in "node e" it is running as a standalone application with the
goal of consuming operating system resources. This sample scenario shows
that JAFL can be very helpful to test the reliability of a Web/Grid application.

3. Detectors

In the previous section we presented our fault injector tool. In this section
we will present the failure detection mechanisms that we have chosen to detect
the faults produced by the JAFL tool.
Fault-detection mechanisms are the responsible for measuring the health of an
application. If they are accurate enough they can help the system operators
to keep the system up and running. Otherwise, if they are not able to detect a
failure and trigger an alarm, the system can become unavailable and the system
administrators would not notice that.

To guarantee a good detection coverage we have chosen four types of failure
detectors:
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Figure 2. JAFL Usage Scenario

System and Application Monitoring and Failure Detection Tools

Component analyzers

Log analyzers

External Monitoring

Since each of these mechanisms has its own advantages and drawbacks, we
will now describe them in detail.

3.1 System and Application Failure Detectors

This is the most common type of failure detectors. They are able to monitor
the operating system resources (memory, cpu, etc ), network interfaces, system
services and others. With an accurate configuration they are also able to monitor
applications and check the resources that they are consuming, their availability
etc.

In the field of commercial solutions we have names such as HP Openview
[18] or IBM Tivoli [19] to accomplish this task. Otherwise, if we prefer public
domain solutions we can choose Zabbix [20], Nagios [21], Big Sister [22] and
others.

In our study we adopted Zabbix, which is one of the powerful and easiest
platforms to work with. It is very easy to deploy and to configure, provides a
wide variety of features and stores all the data in a database, allowing external
programs to collect data from there. It is composed by a Zabbix Server and
Zabbix Agent. The Agent is deployed in the monitored host and sends all the
information to the Server. The Server is then responsible for all the data analysis
and alarm triggering.
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3.2 Component analyzers

One of the mostly known projects regarding component analysis is Pinpoint
[16]. Pinpoint, developed in the University of Stanford, is a project which aim is
to detect application-level failures in Web Applications by using path-analysis
[17] and component interaction mechanisms. Having this project in mind, we
instrumented a synthetic application (which will be used in our experiments)
and we added a new detection layer to it. This detection layer was responsible
for analyzing the components and detect the occurrence of Exceptions or high
variations on the components execution latency. If any of these problems is
detected, this detection layer will trigger an alarm and store a description of the
problem on a specific database along with the respective timestamp. The major
drawback of our implementation is that it is application specific.

3.3 Log analyzers

Log analyzers are applications that parse log files and extract information
from them. Two of the mostly known standalone rule-based log analyzers are
Swatch [23] and Logsurfer [24]. These log analyzers are commonly used to
do real-time analysis of the log files and check if certain regular expressions
are found there. If a certain regular expression, (e.g. an error message) is
found, the tools will throw ouput events that can be converted in alarms. In our
experiments we decided to use a tool developed by ourselves but with the same
design as the ones presented before. We developed a tool that simply sweeps
the log files and tries to locate keywords that can indicate any kind of error. If
the tool detects keywords such as "Exception", "Error" or "OutOfMemory" an
alarm is triggered and the description of the problem is stored in an external
database with the respective timestamp.

3.4 External Monitoring

The external monitors are agents that run outside of the Grid platform and
that are able to behave like real users. They can visit webpages, do shopping
and use services. These external agents are able to detect DNS problems, TCP
problems, HTTP errors, content matching errors and high response times. If
any of these problems is detected, the agent will store the timestamp and all the
available information about the problem in a database. Once again, this was an
implementation from ourselves which was based on external monitoring tools
such as [29] and [30].

4. Experimental Results

In this section, we will present two of the many results collected from
experiments run in the CISUC cluster in Coimbra. We used eight nodes of the
Cluster and they were divided by: Main Server, Zabbix Server, External Agent
and normal clients.

Our main server was configured to expose TPC-W in Java [25]. TPC-W is a
synthetic application written in Java which is composed by a set of servlets that
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simulate an e-business like Amazon.com. We deployed TPC-W over Apache
Tomcat (with 1024 MB JVM) [26] and we used MySQL [27] for data storage.
As we have said before, we added a failure detection layer to the TPC-W
application with the goal of detecting component failures. In the same machine
we configured our log analyzer tool, which was constantly analyzing the Apache
Tomcat logs and we configured the Zabbix Agent which was responsible for
analyzing the operating system resources and monitor the Tomcat container
activity.

In another node we deployed the Zabbix Server and a MySQL database. This
database was very useful to synchronize all the failure detection times since
all the detection mechanism store the information about the failures in this
database.

The other single node was configured as an external monitoring agent. This
agent executes transactions in the TPC-W Web application and checks if errors
appear during those transactions.

The remaining nodes were used to inject workload in the application. This
workload consists in various transactions according to the TPC distribution.

All the internal detectors (Zabbix, Component, Log) were configured with
a 15 seconds polling interval while the external agent was configured with 1
minute between each transaction.

After configuring our experimental framework we started our experiments.
We configured our fault injector to inject failures in the Tomcat container and
we obtained very interesting results.

4.1 Memory Consumption

In this experiment we used our fault injector to simulate memory leaks in the
Tomcat container. To achieve this, we configured our fault injector to consume
1 MB of memory per second, we define 120 seconds as our ramp-up time and
we did not defined any stoppage time. In Figure 3 we can see the detectors
reaction to the fault.

By looking carefully at the Figure 3 we can see that the red line represents
the injection period, the dark blue dots represent the mechanism that detected
the failure and the light blue dots represent the activated trigger.

If we check the detection points along the time we can see that the Zabbix
Agent spotted the problem at 540 seconds. Since Zabbix was configured to
trigger an alarm when the JVM reaches 90% of its maximum heap space, this
was as expeced result. At this point, the JVM Memory is almost full and the
application starts getting unstable. This instability is immediately noticed by
the components when they understand that the request latencies are getting very
high. After the components, also the external monitors detected the problem
when they caught some HTTP timeout errors. By last, the Log analyzer tool
detected an error in the log file. Therefore, we can say that the errors detected in
the log files were OutOfMemory errors. Since here, the service gets completely
unavailable and only the external agents are able to detect the HTTP timeouts.
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Figure 3. Memory Consumption

With this experiment we were able to test the capabilities of both our fault
injector and our four detection mechanisms. Figure 3 can prove that both of
them produced the expected results.

4.2 Table Deletion

With this experiment we have seen how the system handles a table deletion
operator error and what detectors are able to detect this kind of problem. Since
TPC-W uses various database tables, we configured our fault injector to delete
each one of those tables with a rate of 1 table per 10 seconds. The objective of
this table deletion fault is to simulate an erroneous database backup.

If we look at Figure 4 we can see that the component detector was the
quickest to spot the failure. This time, instead of detecting high latency in the
components execution, it has detected an exception at component level. Since
Tomcat logs exceptions to log files, the Log Analyzer tool was also able to catch
these exceptions; but lately. Besides the component and log analyzers, also the
external agents were able to catch this failure. They understood that the content
of the page that they were requesting was different from the expected one. By
analysing the content, they have seen that the exception

Once again our injector was able to accomplish its objective: triggering the
detection systems.

5. Conclusions and Future Work

Using fault injectors to test the robustness of an application is one of the
most common practices in the process of development.
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Figure 4. Table Deletion

In this paper we presented a new fault injection tool, named JAFL, which is
slightly different from the common injectors. JAFL was developed to consume
operating system resources and simulate operator errors.

After choosing different detection mechanisms, we conducted several experi-
ments where we used JAFL to inject faults in a synthetic application and we
observed that almost all of them were detected by our detection mechanisms.
While resource consumption and low-level issues were mainly detected by
Zabbix and by the component analyzer tool, application-level failures were
mainly detected by the component analyzer tool, by the external monitoring
agent and, in some situations, by the log analyzer tool. This is a very positive
result since our objective was to develop a tool capable of triggering the various
fault detection mechanisms used in Web/Grid services.

In the future we want to add more features to the JAFL tool and make it
available to the community. Our objective is to allow the community to use
JAFL in their own applications.
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1. Introduction

Developing parallel and distributed applications is often a difficult task.
One has to take into account many issues that are not present when writing
sequential applications, such as inter-process communication, synchronization
or data transfer. Grid environments provide many facilities that should ease
the developer but sometimes we come across problems that we simply did not
anticipate. Our program can work in an apparently strange and unexpected way
or its performance may prove to be far lower than we expected. This is why
performance monitoring is so important, especially when writing applications
for the Grid. We need ways of analyzing the behaviour of our code in order to
detect potential bottlenecks, instabilities or other defects.

The Grid superscalar (GS) [1] is an environment which helps the application
developer by bridging the gap between writing sequential and parallel appli-
cations. One of its aims is to make the latter as easy as the first. It’s based
on the master-worker model. The user has to write the master code and so
called grid-enabled functions which in the end will be run as separate worker
processes. In the master these functions are called, thus delegating the work
load to the workers. The developer is also provided by GS with special methods
for initializing the environment, reading and writing files (which can be used
for inter-process communication), making barriers etc.

Our aim is to have the means of monitoring this highly dynamic environment
but the existing monitoring systems are mainly off-line ones. A GS application
programmer might have the need for a more reactive tool. This is what moti-
vated us to start efforts to monitor GS with the Grid-enabled OMIS Compliant
Monitoring system (OCM-G), developed in the EU IST CrossGrid project [5]
and allowing on-line monitoring of Grid applications. This should give much
better insight into program runtime. The requirements imposed by OCM-G on
the application to be monitored are registration of each process in the system and
library instrumentation (so that OCM-G gets notifications of the main events,
especially function execution). The system acquires monitoring data, but it does
not interpret or visualize it in any way. This is to be done by other tools that
should get this information by issuing requests and interpreting it according to
the user’s needs.

One of such tools is the G-PM (Grid-enabled Performance Measurement
tool) which provides many ways of performance analysis of application runtime.
It is supplied with various visualization methods allowing to see for example
function execution time and count. It connects to OCM-G and listens to events
specified by the user defining the performance measurement.

The purpose of our efforts is to allow GS application monitoring by inte-
grating OCM-G and G-PM with Grid superscalar, which is not an entirely
straightforward task, because these environments were created separately and
some incompatibilities exist, making changes necessary. Some of them have
already been described in [8] and [9], additional ones will be shown in this
paper. This time, our main focus will be on the presentation of first real-life
monitoring cases and further improvements of the whole infrastructure.



This paper is organized as follows: Section 2 summarizes the integration
issues concerning GS application monitoring, described in [9]. It also depicts
the current progress of work, especially how we’ve solved some of our earlier
problems (focusing on the modifications in the G-PM tool). Section 3 shows
two case studies, which allow to see the benefits and possibilities provided by
the environment. Section 4 shows an analysis of application execution delay
due to monitoring. Section 5 presents the problems we’ve encountered along
with their possible solutions and ideas for the future that could allow us to
improve the whole infrastructure. Section 6 sums up the results and shows plans
for further research.

2. Current progress of work

As mentioned above, the Grid superscalar programming paradigm is based
on the master-worker model. The user writes a master application in a fashion
very similar to writing a sequential application. The environment takes care of
producing a "glue" between the master and workers. To be monitored, both the
master and the worker processes need to register in OCM-G prior to doing any
real work.

In [9] we described how GS library instrumentation is realised in order to
keep OCM-G informed of GS functions being invoked. We showed how me
made use of the OCM-G facilities allowing this, especially the
cg-ocmg-libinstr tool in order to instrument the relevant libGS-master
and libGS-worker libraries. Thanks to the work done then, the user don’t need
to insert any code to the their applications to make monitoring possible. We also
showed our own instrumentation facility - a GS library instrumentation script.
Another important part of our infrastructure was the monGS script through which
all monitored Grid superscalar applications should be executed. It supplies them
with the necessary data (such as the main monitor address and application name)
needed to register in OCM-G. It passes this information both to the master and
worker processes, since every monitored process needs to be registered. We
also showed the new G-PM metrics representing the time spent executing GS
functions and the number of their invocations. We are going to use these metrics
now in both of our case studies.

One of the main problems we encountered was the fact that G-PM was
created with MPI applications in mind and that it works on a fixed number of
processes. It waits for a given number of processes to register, then attaches to
all of them and never updates their list afterwards. This approach (shown in
Fig. 1) is completely inadequate in the Grid superscalar environment, because
workers can be created and destroyed all the time. There can be thousands of
them and any of them can take an arbitrary amount of time to complete. It is
just much more dynamic. Because of this it was not possible to monitor workers
- G-PM had no way of attaching to them. The idea for solving this problem was
to allow G-PM to dynamically respond on the events of worker registration in
OCM-G by automatically attaching to the newly created processes. It is shown
in Fig. 2. We have implemented this approach - at its start G-PM issues a
service request to OCM-G, which specifies the app-proc-registered event
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as an interesting one. Thanks to it, each time a new worker process registers, its
ID is notified to G-PM that attaches to it. This allows the tool to get notifications
for all the subscribed events occurring during worker lifetime. These events
include the beginning and end of instrumented function calls. Workers can
now be fully monitored. Also, when a new worker registers in OCM-G, its
execution is automatically stopped. It can be awoken by G-PM after the tool
had attached to it. This provides additional synchronization between G-PM and
the monitored processes. We make sure that they do not continue their tasks
before the tool is ready to handle them. In practice, they are resumed almost at
once, so this procedure does not slow them down significantly which is showed
later on in this paper, in Section 5.

Figure 1. The original way G-PM attaches to processes

Another new feature is the GS-Worker-delay metric that represents the
amount of time spent in the execution of a single worker process. This
metric measures the time between the execution of the IniWorker() and
EndWorker() functions which begin and end the worker lifetime, respectively.
This allows us to see how much time the worker process actually spent doing
its tasks.
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Figure 2. The mode of attaching G-PM to processes modified for GS needs

Thanks to these modifications G-PM was made aware of the invocations of
all the Grid superscalar instrumented functions (almost all of the main ones)
both in the worker and master processes. The user only need to choose which
functions should be monitored to be able to see when each execution took place,
how much time it took or how many times it was invoked. This information
is provided in a user-friendly graphical manner. G-PM allows for different
visualization methods (i.e. histograms, multicurves, bargraphs etc.). This will
be shown in the next section.

3. Case study

Let’s take a look at two monitoring scenarios. We have an application that
executes a user-defined grid-enabled function an arbitrary number of times to
perform some calculations. Each time this function is executed, a new worker
process is created. In the first scenario we would like to track the execution of
the main Grid superscalar functions - GS-On(), GS-Off() (which start and end
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the whole GS application, respectively), and IniWorker() (which is invoked
every time a new worker is created). We are only interested in the time and
number of these invocations.

First, let’s start the OCM-G monitor:

cg-ocmg-monitor

The above line starts the monitor and returns its identifier.
Now we start the application. As command line parameters we have to pass

the identifier of the monitor (the one we have just received) and application
name (chosen by us), under which it will be accessible to OCM-G. They are
visible in the master process, but we have to execute the application through the
monGS script to ensure that these parameters will be sent to worker processes,
allowing them to register in OCM-G as well.

./monGS ./simple --ocmg-appname simple
--ocmg-mainsm 959c635d:8bab

All we need to do now is to run the G-PM tool in order to observe the
application behaviour.

cg-gpm simple --ocmg-mainsm 959c635d:8bab

Having started G-PM, we can choose some metrics in the measurement
definition window, as shown in Fig. 3. Let’s choose the GS-On-count,
GS-Off-count and IniWorker-count metrics, which will show the execu-
tions of their respective instrumented functions.

Figure 3. G-PM: Defining a measurement for the instrumented functions (invocation count)

Next we can choose a way to visualize our measurements. For the purpose
of this use case we shall choose a multicurve. Now we need to resume the
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program execution (applications by default pause their execution after having
registered in OCM-G) and have a look at the measurement display. We can
observe (in Fig. 4) that the execution of the mentioned functions was spotted by
GP-M - the visualization presents two invocations of the IniWorker() function
(which means that two worker processes have been created and registered in
OCM-G) and invocations of GS-On() and GS-Off() at the beginning and end
of application execution.

Figure 4. G-PM: Application flow of the monitored application (count metrics observed)

In the second monitoring scenario, we are interested in the amount of time
taken by each of the workers. To observe it we go through all of the steps
mentioned above, but we choose a different metric (GS-Worker-delay - see
Fig. 5)

Our multicurve display (Fig. 6) shows that 5 worker processes have been
created, at what time each one was created and how much time each of them
took.

This way we can monitor any of the main Grid superscalar functions - for
example we can see how much time was spent in opening or closing a file
(the GS-Open() and GS-Close() functions) or synchronizing processes (the
GS-Barrier() function).
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Figure 5. G-PM: Defining a measurement (worker execution time)

Figure 6. G-PM: Application flow of the monitored application (worker execution time)
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4. Application delay analysis

Monitoring practically always provides some overhead and slows the moni-
tored application. In our case the program needs to communicate with OCM-G
and this procedure does entail delay. To measure it, we ran the application
shown above in a couple of different scenarios. The first one included no moni-
toring (no delay), the second one was the application communicating only with
OCM-G (lag caused by OCM-G registration and notifications) and in the third
one we also had G-PM running, so all the processes stopped after registration
and were instantly awoken by the tool (no measurements were defined). The
results are depicted in Fig. 7. They show how much more time it took to execute
the application in the second and third scenario with regard to the first one.

Figure 7. Delay caused by performance monitoring

As we can see, the delay is really small and in our case was at most a
couple percent compared to the application execution time. We consider this
kind of lag entirely acceptable. One should realize that these measurements
where performed on the same hardware configuration - the bigger was the
number of processes the more work was to be done. This is why we can’t see
the parallelization speedup - there weren’t any additional free processors to
delegate the workers to.

5. Problems and ideas for the future

Currently, the most important problem is the issue of tuning the whole
environment which doesn’t appear entirely stable yet. It certainly requires
further testing and additional research and implementation effort in order to
find and fix any errors that might show up. Moving between different hardware
configurations is a good way to identify more imperfections. Our current
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implementation should be considered as the alpha version of the whole platform
- additional maintenance will be needed to clean up and document the existing
code.

Another case is the instrumentation of some additional GS routines, that
haven’t been instrumented yet and have been pointed out as important in the
program execution and worth monitoring.

There is also a need to enhance some of the G-PM display modes to make
them more suitable for the Grid superscalar environment requirements. One
of the new G-PM visualization modes is the a space-time diagram. We are
planning to integrate it into the GS-dedicated G-PM version. This diagram
shows the work done by each of the processes as a bar divided into coloured
pieces, each piece representing some part of functionality such as sending or
receiving data, waiting (barrier) etc. This mode was also created with MPI
in mind, so we will have to make it visualize Grid superscalar routines calls
instead of MPI functions. It will also be necessary to allow it to add additional
bars, representing newly created processes, because currently it can show only
a fixed number of processes.

6. Summary

Starting with a coarse-grained manner of performance monitoring provided
for GS applications, the environment consisting of the OCM-G monitoring sys-
tem and the G-PM performance analysis tool has become capable of monitoring
both master and worker processes giving us full insight into the application
runtime. This is quite sufficient for many of the everyday monitoring scenarios,
as shown in the above case studies. We have also proved that the overhead
caused by monitoring is relatively small, which is very important, because large
lags could make the created infrastructure useless. There is still a lot of work
ahead - G-PM requires additional visualization methods (one of them will be
the space-time diagram), the whole environment needs more testing and tuning.
These enhancements will be presented in the final version of the paper.
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Abstract In this paper we present GOA-Net, a multi-agent architecture for remote detection
of application-level failures in web-sites. It has been stated in the literature that
despite the effort on system-level monitoring tools the internet applications and
web-sites still face some application-level faults that end up to be seen by the
end-user. This tool tries to overcome this problem and makes use of multi-
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1. Introduction

In the two past decades the industry have been developing a wide variety
of monitoring tools to detect failures and anomalies in IT systems. The most
compelling examples include HP OpenView [1], IBM Tivoli [2], Altaworks
Panorama [3], the open source Zabbix [4] and Nagios [5]. These tools are
excellent to detect failures that occur or show up at the level of the operating
system and the middleware. Despite this evidence there are unfortunately some
subtle application-level failures that escape these system-level monitoring and
end up to be seen by the end-user [10, 11]. Typically these failures occur
because of operator errors or software bugs (typically non-deterministic) that
escaped offline testing. These failures (Software and Human Operator) still
account for 80% of total failures present in Internet Applications [13].

To detect these user-level failures there have been several proposals for
external detectors [6, 7, 8, 9]. Some of these solutions are simple academic
proposals [7], others are already commercial products [6, 8, 9]. We have
analyzed the state-of-the-art of external monitoring tools and we have identified
some opportunities of enhancement. In this paper we present the design of
GOA-NET, (Global Observation Multi-Agent Network) a scalable multi-agent
network for remote detection of user-visible failures in web-applications. Its
architecture is composed by a coordinator and a standalone, lightweight agent
that can be easily massively distributed around the globe through the integration
with other large-scale distributed applications.

Our agent-detectors are able to simulate entire web-site transactions col-
lecting performance data at the various network-levels and also checking and
validating web-site content. Furthermore, they will be able to forecast perfor-
mance degradation and web-site malfunction. This list of features is directly
competitive with the existing solutions. Apart from these features of the agent-
detectors we have designed a highly-scalable architecture that can be deployed
in the Internet by being potentially integrated with some middleware for large-
scale volunteer computing like BOINC [14] or similar. Although there are some
challenges to overcome we feel this is a potential idea and we now starting an
experimental study with our first prototype of our architecture.

2. Related Work

Fortunately, we are not alone developing this network as several remote mon-
itoring systems already exist. We could state hundreds of different platforms,
networks or frameworks that exist throughout the Internet, but as this would be
an extremely exhaustive list, we present 4 that we consider to be representative.

Site24x7 [7] from AdventNet [12] is a monitoring service that comprehends
a simple architecture based on a single monitoring station providing monitoring
only from 1 location. This is a free service that has support for single web-page
monitoring and transactions. Although it provides content checking for single-
pages it does not allow such for entire transactions. Users are alerted via e-mail
and/or SMS and it generates user-friendly reports with charts on availability
and response time of the monitored web-site.
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Watchmouse [8] is a commercial online service that can monitor different In-
ternet services for correct functioning and availability. Based on 20 monitoring
stations 3 continents dispersed, is capable of monitoring most Internet protocols
(PING, HTTP, HTTPS, SMTP, POP3, IMAP, FTP, TELNET, DNSa, DNSns). Is
a complete solution that also provides web-site content checking and validation,
although its most prominent drawback is the unsupported web-site transactions
making it only capable of monitoring one specific web-page of a configured
web-site. Alerts are also generated via e-mail or sms and charted reports are
also available on response time and availability.

Another commercial remote monitoring solution is provided by AlertSite
Monitoring Suite [9]. This suite is focused on monitoring web-sites and e-
mail transactions. It is composed by a set of products that can be acquired
concerning the needs of each individual customer. Its main advantages are its
capability of collecting very detailed performance metrics for each web-page
monitored (DNS resolution time, TCP Connect time, Time to first byte, time
for whole page download, content download time, simulation of cached and
non-cached users, etc) and also capable of generating SLA proof reports on
web-sites service level. Although very complete on performance metrics, this
platform does not make any content validation making this the most revealing
drawback.

Finally, the platform we consider to be the most advanced. Gomez Perfor-
mance Network (GPN) [6] is a network of agents placed all over the world
that perform performance tracking and remote web-site monitoring. The GPN
agents are present in ISP federated servers, client intranets and 10 000+ real-
users that provide First-, Middle- and Last-mile perspectives of monitored
web-sites. This is, to the best of our knowledge, the only platform of its kind
that covers all three perspectives. Recently, Gomez has joined a partnership
with HP Labs, having integrated GPN with the popular HP OpenView platform,
being now the first platform that is capable of external and internal monitoring
of web-sites.

As we can see from these platforms, not all of them, except maybe for Gomez,
incorporate all the desired features. Some have better detectors but lack in the
architecture; others have a good base of architecture but fail in other aspects.
GOA-Net wants to implement all these features allying a scalable architecture
with good detectors and forecasting techniques that will act according to the
data collected. Our network wants not only to equal the features present in
others of its kind, but also to bring new aspects and techniques to help reducing
the time to detect failures in web-sites.

3. GOA-Net

In this section we will describe GOA-Net, Global Observation Agent Net-
work. Figure 1 represents the network architecture. It is composed by two
base components: A Master Agent (MA) or coordinator and several Global
Observation Agents (GOA). GOAs are all connected to the Master Agent, and
each GOA is assigned N web-sites to monitor that can be updated serving the
needs of the network. The communication between GOAs and the MA is made
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Figure 1. GOA-Net Architecture

though encrypted messages and an important aspect is that any communication
is always initiated by the GOAs to the Master and never otherwise. This is most
helpful in solving connectivity problems like GOAs residing inside firewalls.
Another important aspect to take into account is the fact that the Master Agent
requires some processing power and therefore when the network scales up we
believe we will need a powerful and probably replicated server.

Besides these two base components, a third exists. Forecasting Aggregation
Nodes (FAN) are federated nodes that aggregate and process data gathered by
GOAs in order to produced performance degradation forecasting. These nodes
are hosted in federated data-centers in order to have processing and storage
resources at their disposal. As it is not likely to expect that every monitored
web-site also needs or desires to have this type of prediction service the number
of these nodes in the architecture grows on-demand. In figure 1 is represented a
web-site that requires performance forecasting. Both agents monitoring it are
sending all gathered data to a FAN which is found through an indexing DHT.

The next two sub-sections explain in deep the mechanisms behind the two
base components of the architecture: GOA and GOA-Master
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3.1 GOA

GOAs are the basic unit of the infrastructure. A GOA is an automaton that
acts similarly to a web-crawler, but instead of permanently sweeping the Internet
for content indexation (as web-crawlers do), these agents execute, at a given
polling frequency, predefined transactions in monitored web-sites, as a user
would typically do. Each transaction is operator-defined and can be more or
less complex, being able to include an unlimited number of web-pages to be
accessed and checked for correct functionality. GOAs are able to perform every
kind of user interaction in order to simulate real user behaviour. Forms can
be filled, products browsed, searches conducted, products added to a shopping
cart and business transactions complete. These agents possess error detection
mechanisms that range from pure performance metric collections to higher-
level content validation. With these mechanisms they are able to understand the
correct functioning of a web-site, not only based in pure QoS and performance
metrics but also understanding if the content presented by the site is the one it
should really be presented.

3.1.1 Detection Mechanisms. In order to detect that a certain web-
site is in trouble or is facing difficulties, GOAs collect several metrics when
accessing each page of a certain transaction. We can distinguish these metrics
in two distinct groups: (1) Performance and (2) Content Checking. For the first
group, agents collect several response times, such as DNS resolution time, TCP
connect time, whole page download time and content download time. Collecting
these performance metrics and comparing them with operator-defined thresholds
makes the CA able to infer an incorrect behaviour from the web-site. Naturally,
if the agent fails to resolve the DNS name, fails to open a TCP socket to the
server or receives a HTTP error (4xx or 5xx HTTP codes), he will immediately
report the incident to the MA. These performance metrics make it possible not
only to detect failures but also to perceive their origin (DNS, TCP or HTTP).

Although these performance metrics are often good indicators about the
web-sites behaviour and correct functioning, there are some types of failures
(namely application level failures and operator errors) that may not produce
any visible performance disturbance. These are those types of failures that
sometimes escape from system-level monitors and tend to become user-visible
failures. For example, if a database connection is broken between an application
server and a DB server, the web-site may still respond properly (in terms of
HTTP) and the server system probably will not show any sign of disturbance,
but the content presented will appear corrupted. In order to detect these kinds
of failures, GOAs have content checking and validation mechanisms. They are
able to verify both static and dynamic content in a web-page. Operators can
define regular expressions that each page must contain in order to be considered
valid. Also, they can define expressions that the page must not contain. This is
most useful in web-sites that usually throw error messages when an exception
occurs or display some apology message when for example the database is not
available. Furthermore, operators can define a percentage of dynamic content
present in a certain page. This way, the GOA knows that the page size is not
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expected to vary more or less than the specified percentage. Naturally, if such
variation is exceeded or if a regular expression is/is not matched the MA will
be warned.

3.1.2 Agent Distribution - First-, Middle- and Last-Mile. Each GOA
is assigned a number of web-sites to monitor by the MA. The importance in
having several GOAs monitoring the same web-site with the same transactions
is that different GOAs can provide different perspectives of the Web-Sites’
correct functioning.

Although GOAs are agents that simulate user behaviour when accessing web-
sites, they are not constraint to be run only on client machines. Because this
agent is written in Java, it can be run on every machine with internet connection.
Also, as Global Observation Agents are generic automatons they can be spread
all over the Internet, making this multi-agent grid capable of providing and
analyzing, in real time, different perspectives of the web-site as perceived in
the First, Middle and Last miles of the network path. Figure 2 represents these
perspectives.

First mile coverage, or inside the firewall coverage, provides the perspective
of the web-site behaviour without any network interference (present in middle-
and last-mile). This perspective represents the pure performance of the web-
application without the impact of the network. Simply by placing an agent
running on a machine inside the servers’ firewall, or running the agent on the
server itself can accomplish the collection of these metrics.

The Middle-Mile perspective is collected from the Internet Backbones geo-
graphically disperse on multiple networks. The information collected here can
be used to diagnose and identify problems that are not visible in the first-mile
such as DNS resolution problems, network congestion issues and internal ISP
connectivity problems.

Figure 2. First-, Middle- and Last-Mile perspectives. "Eyes" represent GOAs

The collection of this perspective however, requires the collaboration of ISPs
that must agree in running our agent somewhere inside their own backbones.
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Last-Mile information represents the entire transaction as whole, exactly
as perceived by end-users themselves. This gives us the perception of how
web-site users are experiencing their interactions with the web-site. Also, this
perspective is useful in diagnosing problems present only in end-users, such as
performance or reliability problems associated with over weighted web-pages
(typically present in users with smaller bandwidth).

3.1.3 Error Location. Although we have seen that GOAs by themselves
incorporate some mechanisms that help identify the source of an identified error
(DNS, TCP and HTTP error detection enables the inferring of the error location,
DNS server, network or server respectively), more accuracy can be achieved by
correlating the information of different GOAs.

Table 1 summarizes the different errors that can be seen in each of the three
different perspectives. Correlation between these perspectives leads to better
pinpoint the source of the problem originating the anomaly detected.

Table 1. Visible Failures in each of the three perspectives

Routing Network Cong. Server Conect. DNS Res. Internal Server
Problems Problems Problems Problems Problems

First-Mile - - - - x
Middle-Mile - x x x x
Last-Mile x x x x x

Failures originated by routing problems are expected to trigger only the
agents present in last-mile since middle and first are not prone to be affected by
these failures.

In order for GOA-Net to consider network congestion, server connectivity or
DNS resolution problems as the origin of a failure, only agents placed in middle
and last mile should report the incident since the first mile is not affected by
any of these problems. In this case, differentiation between the three possible
origins is made by the type of error perceived by each GOA. Remember from
the previous section, that GOAs are able to distinguish between DNS, TCP and
HTTP errors. If they report DNS problems, then the cause must reside within
the DNS server. If TCP connection reports host unreachable then it is most
probably due to the server lacking Internet connectivity. Although, if GOAs
timeout connecting to the server, it indicates that there is probably a network
congestion between them and the server.

Finally, we can infer the cause of the problem to reside inside the server itself
if all the agents in the three perspectives report the incident, as this is the only
cause of failure that will result in visibility in all three perspectives.

3.2 Master Agent

The Master Agent is a central point of coordination of all the GOAs. The MA
holds every configuration for every monitored Web-Site. These configurations
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include the detailed specification of the transactions to be reproduced by the
GOAs when accessing the web-site together with some parameters that define
the frequency in which each GOA should reproduce the defined transaction.
As a central coordinator, the MA has the mission of assigning each GOA with
WSs to monitor. Furthermore, the MA is responsible for all the data correlation
between GOAs and for confirming the alerts received by them.

When an alert is received from any GOA, the MA will issue an error report
to the system administrator. In order to provide accurate reports the MA needs
to correlate information between every GOA monitoring the same web-site. To
do this the following algorithm is applied.

Error Reporting Algorithm
MA generates error reports upon reception of a notification from a GOA

indicating an erroneous condition with a monitored web-site. The generation
of such reports is made by the MA which correlates information about all the
GOAs monitoring that web-site. To do this, MA keeps an internal table for each
monitored web-site that keeps the notifications received from GOAs. Upon
reception of such notification the corresponding table is updated reflecting the
information received from the GOA. In order to correctly timestamp the reports,
MA keeps the mean RTT value for each GOA. The notification timestamp is
then computed as the MA timestamp at the moment notification is received
minus the mean RTT (Round Trip Time) of the GOA that sent the notification.

Because GOAs are not expected to issue notifications all at the same time
(because they only run their transactions from time to time) it is possible that
upon the reception of a notification, other GOAs monitoring the same web-site
may still have not notice the anomaly reported. Therefore, the MA has to wait
before he can have the perspective of all the GOAs monitoring the web-site. The
waiting interval is computed as the defined polling interval for the web-site plus
the maximum mean RTT of the agents monitoring that web-site. GOAs that do
not issue a notification within this interval are considered not to be -catching-the
anomaly.

In order not to delay failure reports to system administrators, issued reports
can have different accuracies depending on the number of GOAs on the different
perspectives that noticed the anomaly in the moment the report is generated.
Three levels of accuracy exist: Low, Medium and High. Upon the reception of
a notification from a GOA, the MA always issues a report. The notification of a
problem P implicates that N GOAs notify that same problem (Remember table
1 where we can see which GOAs should report a determined problem). If at
least 1 GOA of each level that is supposed to notice the problem has already
issued a notification, then the error report is considered accurate (High accuracy
level). If only some of the GOAs have issue the notification, but timestamps
indicate that others still have time to notify, the report is considered Medium
accurate. In case that none of the expected GOAs notified the MA about the
problem but again the waiting period is not yet over, the report is considered to
be of Low accuracy.

When the MAs’ waiting period is over and no High accuracy report has been
issued, the first notification is considered a false one and a new report is issued
disconfirming any previous reports that had been generated.
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With this mechanisms GOA-Net is capable of quickly issuing error reports
although not compromising the filtering of any possible false positive alerts.

4. Objectives

Having summarized the architecture and design specifications of GOA-Net,
we now present the list of features and objectives for this platform. The network
must be capable of (1) Support for web-transactions, (2) checking and validating
static and dynamic content, (3) monitor from First-, Middle- and Last-Mile, (4)
Large-Scale coverage with integration with volunteer computer initiatives or any
other mean of large-scale deployment, (5) collecting and analyzing performance
metrics in real time.

Most of these features (except 4) are already present in most of the platforms
we analyzed in section 2 of this paper but the main differentiation objective
we have, is to incorporate some intelligence in our agent. To the best of our
knowledge, all the agents/monitoring stations of the platforms we analyzed are
pure reactive. They simply monitor and react when some variable scopes out of
a threshold. It is our goal to make our GOA not only reactive but also proactive
in the sense that it should be (6) capable of proactively forecast performance
degradations and web-site malfunctions.

Briefly, objectives 1-5 are those which make GOA-Net competitive in relation
to other solutions available. 6 differentiates our network.

5. Future Work

In this paper we presented a scalable multi-agent architecture for failure
detection and performance degradation forecasting in web-sites. This is an idea
we feel can contribute to better detect failures and reduce unavailability. We have
now finished a first prototypal implementation and are running experiments that
help us validate and better understand the potential behind this tool. We expect
in near future to present these results and also to extend our implementation to a
more professional one that we hope can be used by both industry and academic
community.
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Abstract As High Performance platforms (Clusters, Grids, etc.) continue to grow in size,
the average time between failures decreases to a critical level. An efficient and
reliable fault tolerance protocol plays a key role in High Performance Computing.
Rollback recovery is the most common fault tolerance technique used in High
Performance Computing and especially in MPI applications. This technique
relies on the reliability of the checkpoint storage, most of the rollback recovery
protocols assume that the checkpoint servers machines are reliable. However, in
a grid environment any unit can fail at any moment, including components used
to connect different administrative domains. Such a failure leads to the loss of
a whole set of machines, including the more reliable machines used to store the
checkpoints in this administrative domain. It is thus not safe to rely on the high
MTBF of specific machines to store the checkpoint images.

This paper introduces a new protocol that ensure the checkpoint storage
reliability even if one or more Checkpoint Servers fail. To provide this reliability
the protocol is based on a replication process. We evaluate our solution through
simulations against several criteria: scalability, topology, and reliability of the
nodes. We also compare between two replication strategies to decide which one
should be used in the implementation.
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1. Introduction

High Performance Computing has an important role in scientific and en-
gineering researches. As the size of High Performance Systems increases
continuously, the average time between failures becomes increasingly small. So
Fault Tolerance becomes a critical property for Parallel applications running
on these systems. MPI (Message Passing Interface) paradigm is actually the
most used to write parallel applications. However, in traditional implementa-
tions, when a failure occurs, the whole distributed application is shutdown and
restarted [1]. To avoid this, many solutions have been proposed, but the most
used is Rollback Recovery [2]. Rollback recovery is based upon the concept
of a checkpoint. A checkpoint describes the state of one or more components
of the system at a given time of its execution. These checkpoints are built
from images of processes and the state of communication channels. During
its execution, the system takes checkpoints according to a scheduling policy.
When a failure occurs, some processes rollback to their last images. The fault
tolerance protocol must ensure that the system is in a coherent state which al-
lows it to continue its execution. With coordinated checkpoint protocols, all the
processes are synchronized and take their images at the same time, by building
a coherent state and a global image of the system called a snapshot. A snapshot
is a collection of checkpoint images (one per process) with the state of the
different communication channels [3]. When a failure occurs, all the processes
must rollback together to the last coherent state, so the checkpoint images of
all the processes must be available simultaneously. Usually, checkpoint images
are kept for the two last checkpoint waves in order to spare storage resources.
If the checkpoint images are not available, the rollback technique fails. These
protocols often assume that Checkpoint storage is made by special dedicated
and reliable machines named Checkpoint servers.

A grid is an infrastructure consisting of the aggregation of several distributed
resources, usually from different administrative domains. There are many
kind of grids, and we focus in this study on the cluster of clusters: companies
and universities build large supercomputers by aggregating the resources of
different clusters. Using such a grid, users expect to obtain larger systems more
suitable to address the complexity of their problems. One of the features of
a grid is its size, orders of magnitude larger than a single cluster. Moreover,
a grid spans multiple domains and is characterized by a topology including
few interconnection points linking many components. In a single cluster, if
the failure hits the switch or the interconnection mechanism, each component
is disconnected from the others and the failure may be considered as fatal. If
one of the interconnection point fails, a whole cluster is lost for the rest of
the system, including its most reliable components. So, no machine can be
considered as reliable anymore. In a grid, however, the amount of resources lost
by the failure of a router may be tolerable.

In this paper, we introduce a distributed checkpoint storage service of coordi-
nated Rollback Recovery Protocols suited for clusters of clusters. It addresses
the issues related to the Grid Model: to ensure the checkpoint storage reliability,
even though one or more checkpoint servers fail, we use a replication process.
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We compare two different strategies of replication named simple and hierarchi-
cal. The paper is organized as follows. Section 2 presents the Grid and failure
models we consider. Section 3 presents the related works. Section 4 introduces
our protocol for distributed checkpoint storage. We evaluate performances of
our approach and we compare two different replication techniques in section 5.
Last, we draw our conclusions in Section6.

2. System Model
We consider a High Performance Grid made up of powerful computer servers.

We also consider the grid environment as an aggregation of C clusters, each
cluster i includes Ni machines. To store the checkpoint images, we define in
each cluster a set of checkpoint servers. Thus, in a cluster, we have two kinds
of processes. Clients processes that carry out calculations and regularly transfer
their checkpoint images to the storage service; and checkpoint servers (CS),
which maintain the checkpoint storage. All checkpoint servers within the same
cluster are pooled in a group. The different clusters are linked over front-end
machines. Figure 1 illustrates the architecture of our system.

We assume that any component of the system can fail at any time, and we
consider that there exists a coordinated checkpoint protocol which handles the
clients failures. Therefore, we propose a solution to handle the checkpoint
server failures to ensure the storage service reliability even when a checkpoint
server fails. We consider two types of behaviors:

a failure may hit a checkpoint server in a cluster.

a failure may hit the cluster’s front-end machine, or a set of failures dis-
connects a whole cluster from the rest of the grid. For the clusters which
remain connected, all the components of the cluster fail simultaneously.

To increase the protocol flexibility, we make the following assumptions :

We consider a group failure if we lose a connection with the checkpoint
servers of this group (e.g.: a front-end failure). We suppose that it cannot
be more than K group failures, with 0 ≤ K ≤ C − 1.

In the case of a group failure, the computation which was executed in this
cluster get restarted on new one.

We suppose that for a number of checkpoint servers ni in group i, 0 ≤
i ≤ C − 1, at a given moment, there cannot be more than ki checkpoint
servers failures, 0 ≤ ki < ni.

These numbers are fixed according to the mean time between failures in the
system. Our solution relies on a distributed checkpoint service. To ensure
the reliability of this service, we use a replication protocol. We replicate
Checkpoint images over checkpoint servers, so that a valid replica is available
even though one or more checkpoint servers fail. To tolerate ki failures in a
group i, 0 ≤ i ≤ C − 1, we must have at least ki + 1 replicas in this group.
To tolerate a group failure, we also replicate the checkpoint images outside the
cluster which hold them. So, to tolerate K group failures, with 0 ≤ K ≤ C −1,
we replicate the checkpoint images over K + 1 different groups.
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Figure 1. System Architecture

3. Related Works
In checkpoint-based protocols, during the execution the computation state

is periodically saved. Then when a failure occurs, the computation is restarted
from the last saved state. Checkpoint based protocols can be classified into
three categories: coordinated checkpointing, uncoordinated checkpointing,
and message logging [4]. The first coordinated checkpointing protocol for
distributed applications was proposed by Chandy and Lamport in [3]. This
solution assumes that all the channels are FIFO and any process can decide
to initiate a checkpoint wave. This algorithm is implemented in many fault
tolerant message passing libraries, such as LAMMPI [5], MPICH-V [4]. Other
techniques like Checkpoint Induced Communication [6] try to limit the size
of the coordinated set to build the global coherent snapshot. This technique
has also been implemented in other fault-tolerant libraries, like the proactive
communication library [5]. All these techniques assume the ability to store the
checkpoint images in a reliable media which is not subject to failures.

Other checkpoint based solutions exists without relying on stable storage, [8]
introduces a disk-less checkpointing solution. This solution defines a way to
perform fast, incremental checkpointing by using N+1 parity, which reduces
high memory overhead required by disk-less checkpointing methods. However,
after a failure, all processors communicate with the parity, which can cause a
communication bottleneck. Also, the solution is based on the parity machine
which should never fail. Others distribute the checkpoint images directly in
the memory of the computing peers, like for the FT-MPI project [9], or the
Charm++ project [10]. However, storing the checkpoint image in the memory
of the other processes implies either to use twice the memory necessary for
the application or remove the transparency assumption and to use user-driven
serialization of the checkpoint image. [11] describes disk-based and memory-
based checkpointing fault tolerance schemes. The goal of this solution is to
automate the checkpointing and the restarting of the tasks, and thus to avoid
writing additional code. These schemes are based on the works presented in
[12] and [13]. In [14] a new solution based on the assumption that some failures
are predictable is introduced. It pro-actively migrates execution from processors
suspected to fail. This solution is based on processor virtualization and dynamic
task migration ideas provided on [15] and [12]. [16] introduces a fault tolerance
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protocol that provide fast restarts. This protocol uses the concepts of message
logging and processor virtualization. It does not assume the existence of reliable
component that never fails.

The goal of the replication services is to keep the states of the different
replicas coherent, by implementing the adequate primitives. The two major
classes of replication techniques ensuring this consistency are: active replication
[17] and passive replication [18]. Simple replication is not adequate for high
performance computing. Indeed, to tolerate n failures every component must
be replicated n times. Thus, the computation resources are divided by n.
Replication is however a mechanism used to ensure the accessibility of data
in fault tolerance protocols. [19] considered distributing generic data on the
grid using distributed hash tables, and evaluated the efficiency of this approach
for storing checkpoint images for fault tolerance. However, this technique
is not focused on the coordinated checkpoint protocols, which induce a peak
overload on the EDG network, and we believe that hierarchical techniques
are more suited than DHTs for this kind of topology. [20] and [21] introduce
solutions to ensure availability of some failures points (e.g. the head node
of a cluster architecture) using redundancy. These solutions are based on the
asymmetric and symmetric Active/Active High availability. Active/Active High
availability means that several replicas are active in the same time. Wherease in
the asymmetric one there is not any coordination between the active replicas, in
the symmetric one the active replicas maintain a common global component
state.

4. Checkpoint Storage Protocol
Our checkpoint storage protocol, based on a distributed checkpointing ser-

vice and a replication process, proceeds in two phases. The recording phase,
responsible for images storage, and the recovery phase executed when a failure
occurs on some calculation nodes.

4.1 The Recording Phase
The recording phase proceeds in two steps. First, clients send their images to

the CSs within the same cluster. Second, those images are replicated amongst
the CS group within the local cluster, and in remote clusters. In order to improve
the performances, image sending is made on a distributed way. A checkpoint
image is split in several parts of fixed size named chunks. We call f j

c the jth
chunk of the cth client checkpoint image. During the building of the checkpoint
image, the client builds his chunks and sends them to the CSs of its cluster.
The client memorizes a list of CSs that received its chunks. At the end, the
client keeps a local copy of its checkpoint image, then it sends to all the CSs
on its cluster the finalize message which contains the chunks number. The
image is considered safely stored, when the client receives acknowledgments
(ACKs) for all its chunks. If the client detects a CS failure before the reception
of the corresponding ACK, it selects another CS and resends the corresponding
chunks. If the client fails during the transfer, the checkpoint wave get cancelled,
a new resource equivalent is allocated, and the application is restarted from its
last checkpoint.
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Figure 2. Example of execution

In the second step, chunks are replicated on the CSs, we consider that a
chunk f is correctly replicated in the group i if and only if f is replicated on
ki + 1 servers in this group. According to the assumption on the number of
tolerated failures, a chunk is considered recorded, if it is correctly replicated in
K + 1 groups.

4.1.1 Replication Strategies. .
1. Simple Replication Strategy: We have adapted the passive replication

technique : each checkpoint server receiving a chunk ckj
c from the client

c becomes primary of this chunk, and must ensure its replication. When a
checkpoint server s primary of a certain number of chunks fails, a new server is
selected to become primary of all the chunks of s.

During the replication step, a CS s can play several roles according to the
origins of the received chunks. First, receiving a chunk from the client, s is
considered primary of this chunk. It is responsible of the correct replication of
this chunk in its group and on K different groups before sending the acknowl-
edgement to the client (ACKf in figure 2). Second, if it receives a chunk from
a CS s′ 6= s from another group i′ 6= i, it is considered as a pseudo-primary of
this chunk in its group. It is then responsible to replicate the chunk in its group
and to send the acknowledgement to the primary s′ (ACKg in figure 2). The
last role, intermediary is played by a CS when it receives a chunk from another
CS within its group. In this case, the CS sends directly the acknowledgement to
the primary or to the pseudo-primary (ACK1, ACK2, and ACK3 in figure 2).
During the replication step, the chunks received from clients have the greatest
priority, than those received from the other CSs, and finally those received from
the other clusters.

With the Simple Replication Strategy (SRS), the primary CS does the repli-
cation over all the other CSs of its group, then over the other groups. Then
each pseudo-primary does the replication over all the other CSs of its group.
So a CS s receiving a chunk ck from a client or from another group sends it to
(s + i)mod[2m], 1 ≤ i < 2m. With this technique, an intermediary CS has no
active role in the replication process.

2. Hierarchical Replication Strategy: To accelerate the replication process,
we introduce another strategy. Its goal is that each CS in the system has an
active role, including the intermediary ones. For that we define for each CS s a
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set of CSs with identifiers {s, s + 20, s + 21, · · · , s + 2m−1} called children.
Fig.2 presents a diagram of an execution of the replication step with this strategy.
The primary server of a chunk ckj

c replicates it on the children servers which
constitute the first level of replication, then, each CS receiving this chunk must
replicate it over its own children servers, carrying on that way until all the CS
have received the chunk. To avoid replicating a chunk twice on the same CS, a
request is sent before each replication (the third step in Fig.2).

During the execution of a checkpoint wave, two cases may happen : 1) the
execution finishes without any CS failure, and 2) some checkpoint servers fail
before the end of the wave. If a primary CS s fails during the replication, a new
primary s′ is selected to handle the primary chunks of s. A client detecting the
failure of s before the reception of its acknowledgement, resends the chunk to
s′. The CSs are organized on a circular list, so when a primary CS fails the new
primary is simply the next in the list. s′ will check the replication status before
the breakdown. In case the replication was started before the failure, it sends a
request to collect the acknowledgements from the other CSs to know if they have
received the chunk by the last primary. When a CS in the same group receives
this request, it acknowledges the previous reception of the chunk, or asks for
it if it has not received it before. When a CS from another group receives this
request, it checks the previous reception of the chunk, then it verifies if a correct
replication was made in its group before sending an acknowledgment to the
primary, otherwise, it asks for it.

At the end of the recording phase the CS has to check if all the clients of the
same distributed application have correctly recorded their images, then validate
locally the checkpoint wave.

4.2 The Recovery Phase
In the beginning of this phase, a consensus is executed between the different

CSs to define the last valid wave: each CS proposes the number of its last valid
wave, and the goal is to arrive at an agreement. As several checkpoint wave
can be done before failure, the client starts by asking for the last valid wave,
and checks whether the image is available locally. Otherwise, it requests its
image from the CSs within its cluster. As for the recording, recovery is done
in a distributed way: the client sends its request of recovery to all the CS of its
group, then a CS receiving the request provides chunks of which is primary.
Finally, once all the chunks are recovered, the image is reconstituted, and the
client is restarted.

5. Performance Evaluation
We study our solution using the SimGrid [22] simulator. SimGrid provides

the main functionalities for the simulation of distributed applications in hetero-
geneous distributed environments. We particularly use MSG, the first distributed
programming environment provided within SimGrid. It allows us to study the
different heuristics of the issues before the implementation. It makes it possible,
in the first stage, to validate our solution and especially to carry out a good
comparison between the two replication strategies.
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Running a simulation with Simgrid requires as input two files in XML for-
mats. These files do not only describe the simulation parameters and dynamics
(e.g. links and machines failures) but also the network topology. We suppose
that the Checkpoint Servers of a group are connected between them through
a complete graph. The number of CS is small, so we will have a realistic
number of connections to manage. However, for the inter clusters connections,
we choose a graph much less connected, where each CS will only have one
outgoing connection. For all the experimentation, the links within a cluster are
homogenous, as are the CSs and the clients.

5.1 Impact of the Topology
We first investigated the impact of the clients number, and thus the size of

the data to be stored. For that, we fixed the cluster and the CSs numbers in
the system ( c = 1 cluster and s = 6 CSs), and we varied the clients number.
The first curve in Fig.3, the checkpoint wave, presents the wave execution
time according to the number of clients. We notice that the execution time is
proportional to the number of clients. This is not surprising since more clients
means a larger quantity of data to store and to replicate, and thus the wave
of checkpoint takes more time. To identify which one of the two checkpoint
phases influences the execution time, we isolated the recording phase. The
corresponding measurement in Fig.3 shows that the execution time of the
recording step increases slowly. This is expected, because in theory this step is
executed in a parallel way and it takes xl/N time unit (where x is the number
of chunks per client, l the size of a chunk, and N the link capacity) whatever
the clients number is . In practice, the observed increasement is due to the
saturation of the communication bottleneck. So the growing of the checkpoint
wave execution time when a clients number increases is caused by the replication
phase execution time. In theory the execution time t of the replication phase is:

t = kxl(
1

N
− 1

sN
)

Thus when the clients number k increases the execution time of the replication
phase increases proportionally.
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Figure 3. Scalability of the checkpoint

The goal of the second experimentation is to evaluate the impact of the
network topology. In order to do this, we consider a fixed number of clients
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k = 100, a fixed number of CSs s = 30, and we make vary the number of
clusters c. Thus, there is k/c clients and s/c servers in each cluster; every client
has x chunks of size l. The links have a capacity of N MB/s within a cluster and
N ′ MB/s between clusters. Theoretically, the checkpoint wave over c clusters
takes the time t defined so:

t =
xl

N
+

2xkl

N
+

xkl

sN
+

xkl

N ′
− 1

c
(
xkl

N
+

xkl

N ′
) − cxkl

sN
The curve resulting from this equation is presented in Fig.4.
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Figure 5. Impact of the topology

The first curve, Fig.5, presents the result of this second experimentation. To
better understand the result we isolated the recording phase (the second curve,
Fig.6), and the local replication (the last one, Fig.7). When the cluster number
increases, the clients number per cluster decreases, and thus the recording phase
execution time decreases. However, although the number of checkpoint servers
per cluster decreases, the execution time of the local replication increases,
because there is overlapping between this phase and the rest of the execution,
which reduces the global execution time of the checkpoint wave.

5.2 Impact of the Replication
To evaluate the two replication strategies, we first investigated the effect

of the CSs in the system and thus the effect of the replication. For doing
this, we fixed the clients number k = 200 and we varied the CSs number s.
Figure 8 shows that the execution time of the checkpoint wave, particularly
the replication phase increases considerably and proportionally with the CSs
number. Theoretically, the execution time t of the replication phase is:

t =
kxl

N
− kxl

sN
So when s increases the execution time of the replication phase increases too.
To compare the effect of the hierarchical replication versus the simple one,

we fixed the clients and the chunks numbers per client, and we varied the CSs
number. Then we launch two series of executions with the two strategies. These
experiments are carried out to decide which replication strategy will be used
in the implementation. As we can see in Fig.9, the best replication strategy
depends on the number of CSs. The hierarchical one does additional checks
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Figure 8. Impact of the Replication.
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Figure 9. Comparison between hierarchi-
cal and simple replication.

for the presence of chunks onto the secondary CSs before each sending. As we
give the first priority to the chunks received from clients, and every CS received
data from clients when Css number is low, the additional checks increases
needlessly the execution time, which makes the simple replication better than
the hierarchacal. However, when the CSs number increases, the hierarchical
replication allows overlapping of communications to secondary CSs, and so
the acceleration of the replication phase. We observe that when the simple
replication is better, the difference is small because the checks message size is
smaller than the chunk size. Although the execution time of the recording phase
should be fixed, increasing the number of clients or decreasing the number
of CSs makes the recording phase more aggressive, in the sense that the size
of data to be stored increases or the storage devices number decreases which
causes communication bottleneck.

6. Conclusion
An efficient and reliable fault tolerance protocol plays a key role in High

Performance Computing and especially in MPI applications. Rollback recovery
is the most used technique in such environments. To ensure a high level of fault
tolerance, the rollback recovery techniques rely on the availability of checkpoint
images at rollback time. Usually, rollback/recovery protocols often assume
that Checkpoint storage is made by special dedicated and reliable machines
named Checkpoint servers. In a grid, however, no machine can be considered



A Distributed and Replicated Service for Checkpoint Storage 305

as reliable anymore, since even machines with a high MTBF are located inside
a cluster which may be entirely disconnected from the rest of the grid.

In this work, we introduced a distributed checkpoint storage service of
coordinated Rollback Recovery Protocols suited for clusters of clusters. It
addresses the issues related to the Grid Model: to ensure the checkpoint storage
reliability, even though one or more checkpoint servers fail, we use a replication
process.

We compared two replication strategies, a simple direct strategy, where a CS
receiving image from a client uploads this image to each and every one of the
CSs; and a hierarchical one, where CSs synchronize with each others to ensure
the replication. This comparison shows that the strategy choice depends on the
system topology, particularly the CSs and the clients numbers.

The different experimentations show that the execution time of the replication
phase takes much more time than the recording one. A long time of the
checkpoint wave execution decreases the checkpoint wave frequency. To avoid
this we propose to consider the checkpoint wave as done when the recording
phase is finished. So, a CS sends the acknowledgments when it received the data,
then it does the replication. Thus we increase the checkpoint wave frequency.
If a CS fails before the end of the replication, and some data is lost, we cancel
this step, and we consider the last wave for which the replication is successfully
finished.

For the future, first we will evaluate our approach via an experimenation in a
real experimental grid. Then, we would like propose a new scheduling scheme
and a new replication strategy that improve the performances of our protocol.
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Abstract In this paper, we describe a top-down approach to solution of the problem of
component composition on the Grid. The proposed method is based on the use
of a dynamic scripting language. It enables designing a simple API to define
component composition in an elegant and concise way. GScript [17] provides
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position) and invoke the component methods with the minimum amount of code.
As GScript is based on Ruby [26], it also provides the full flexibility of a program-
ming language, with a rich set of control constructs of component applications
(workflows). GScript hides all the details of the underlying Grid infrastructure, so
the programmer may focus on the application logic, while the process of resource
selection and component deployment is performed automatically. We describe
the architecture of the runtime library needed to support the high-level features,
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1. Introduction

Component-based programming is considered an important paradigm for
constructing Grid applications [15]. It offers a well-structured abstraction of
processing elements represented by components, their interfaces and protocols
realized as component ports and connections between ports that constitute the
information flow. Although the conceptual model is simple, the task of deliver-
ing such a programming platform remains a challenge due to the complexity of
the Grid.

There are two ways of composing components: composition in space and
composition in time. Both are relevant to Grid applications [25, 16]. Compo-
sition in space involves direct connections between component ports, while
control and a data flow passes directly between connected components. Com-
position in space can be either static – the connections are established prior
to the actual application execution or dynamic – the connections may change
during application execution which may involve reconfiguration or creation of
connections on demand. Composition in time assumes that components do not
have to be directly connected, but their server interfaces can be invoked by a
client, which coordinates the whole application. In this case both control and
data flow pass through the client, which can be a specific application or a more
generic workflow engine [18].

There is a need for a high-level programming approach which would enable
combining both types of component composition in a way which is flexible
and convenient for a programmer. The approach should not be limited to a
single component model, since many models are available for programming
Grid applications [15]. Moreover, being focused on the Grid environment, it
should conceal the complexity of the underlying infrastructure, automating the
process of component deployment and resource selection where possible. It
would be also valuable if the solution could facilitate such aspects as component
configuration and passing parameters to the application. Such a solution would
eventually form a powerful application development, deployment and execution
tool for the Grid.

In this paper we describe a top-down approach to solving the problem of
component composition on the Grid. The proposed solution is based on a
dynamic scripting language [29]. This solution is especially well suited for
rapid application development (RAD), prototyping and experimenting scenarios.
A scripting approach also provides the full flexibility of using a programming
language, enabling a rich set of control constructs of component applications
(workflows). The high-level notation allows hiding all the details of the under-
lying Grid infrastructure, so the programmer may focus on the application logic
and automating the process of resource selection and component deployment.
The following section describes current work related to component composition.
Next, we present the concept of our language and show how it can be applied to
the Common Component Architecture (CCA) [3] with MOCCA framework [24]
and Grid Component Model (GCM) [14] with the ProActive [5] implementa-
tion. After introducing the basic features of the notation, we briefly describe
the architecture of a runtime system which is needed to support the high-level
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functionality. Finally, we report on the progress of a prototype implementation
and conclude with presenting prospects for future work.

2. Related work

There are several ways of component composition: low-level API, scripting
languages, descriptor based programming (ADL), skeletons and high order
components, and graphical tools.

Each component standard, such as CCA or Fractal, provides an API (possibly
in many programming languages) to perform basic operations on components.
This API is then used by other high-level interfaces, facilitating the composition
process.

A common approach to component composition is to use a scripting lan-
guage. Some frameworks define their specific notation, as in the case of the
CCAFFEINE framework [1], while others offer direct interfaces from a script to
the framework API. The latter case is implemented in XCAT [21] and MOCCA,
where applications can be assembled using a script written in Jython [20] or
JRuby [19]. These languages have been selected partially because they use
Java-based interpreters and allow seamless integration with Java client-side
libraries or component frameworks. When using such scripts, it is possible to
combine composition in time with composition in space, since both Python and
Ruby are powerful programming languages which allow expressing the control
flow and the sophisticated logic of any application, as is the case in the XCAT
framework [16].

Composition in space may be performed using an Architecture Description
Language (ADL). Such a notation, which is present in the component standards
such as Fractal [2] or CORBA Component Model (CCM) [10], allows speci-
fying the application structure in the form of a graph showing the connections
between components. By introducing a concept of virtual nodes in ProActive
and in GCM [5], it is possible to separate the architecture description from
the deployment information, which is then provided in auxiliary deployment
descriptor files. The ADL approach can be supported by graphical tools, how-
ever, it is limited in describing dynamic application behavior and does not allow
composition in time.

For composition in time, there are specific notations available, called work-
flow languages, which specify application flow (control or data) in the form of
a graph. Some workflow systems, such as Kepler [2], Triana [30], Pegasus [13]
and K-WfGrid [18] may be used on the Grid. They enable editing the workflow
using graphical tools and support conditions, parallel execution and specific
constructs such as loops, etc. They are intended to assist non-programmer users
in developing applications; however for workflows with many components
and complex interactions, they may become difficult to use. Workflows may
be expressed in an imperative language, e.g. in Grid Superscalar [27]. Some
authors suggest using graphical languages to combine both temporal and spatial
composition. As the examples of ICENI [25] and GriCoL [6] suggest, this
requires creation of specialized component model extensions.
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Figure 1. Example of application using composition in space

3. Composition with a High-level Scripting Language

The proposed approach to composition of component-based grid applications
bases on a dynamic scripting language. This basis allows designing a high-level
API for application composition and deployment, which enables specifying the
application structure in a concise way. Modern scripting languages allow the
programmer to specify the same functionality with considerably less lines of
code than e.g. Java, making the code more readable and thus less error-prone.
Additionally, they provide full expressiveness needed to specify application
behavior in more flexible way than any workflow notation. Following careful
analysis of possible candidates, we have selected Ruby [26] which is an object-
oriented, dynamic scripting language with a clear and powerful syntax. As the
interpreter we chose JRuby [19] which is implemented in pure Java and allows
seamless integration with all available Java libraries.

To illustrate the concept of a script, let us consider a simplified application,
built of three components (see Fig.1 or Fig.2):

Generator for preparing initial data,

Simulation part performing some computations and

Output element responsible for storing the results.

Such an application can be modeled either using direct connections between
components, or as a workflow which is coordinated by an external entity, labeled
as the RuntimeSystem.
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Figure 2. Example application using composition in time

As Ruby is an object-oriented language, component instances in the script
are represented by objects. With dynamic method definition and invocation
it is possible to refer to their ports and port operations using a single method.
Simple loops enable us to create collections of components and then iterate over
them or connect them in required topologies, such as graphs or meshes. It is
also possible to mix the various types of composition and control the dynamic
behaviour of the application.

3.1 Composition support

A script allows us to easily express both types of composition (see Fig. 1 and
2) while preserving a clear and concise notation. In Fig. 1 the script is used to
create direct connections between component ports, but also to configure the
components and launch the simulation. Subsequently, control is passed to the
components and the data flows directly between them using established bindings
(e.g. simulate() execution invokes getData() and storeData() methods on bound
components whenever needed). In Fig. 2, the components are implemented in
such a way that they do not need connections, as data is passed through the
runtime system under the supervision of the runtime system. Such composition
may be useful for more loosely-coupled scenarios, since it does not require
direct dependencies between components.

In both scenarios the Generator and Output components may be implemented
in the same way, so their usage is invariant in both composition types. This is,
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however, not the case for the Simulation component, since it needs to get data
either via a connected uses port or as a parameter of the simulate(data) method.
Nevertheless, it is possible to design and implement a Simulation component,
which can be compatible with both types of interactions. It should have both
uses ports and two versions of the simulate() method: the simulate() which tries
to fetch the data from the uses port and then stores it via the output port, and
result simulate(data) which does not rely on the uses ports.

3.2 Deployment specification

A programmer assembling a Grid application should be free to specify how
much information about deployment is to be provided manually and which
decisions could be left for automatic tools. We consider three levels of detail:

Fully automatic: the programmer specifies only the class of a component
to create. The location for component deployment is determined automat-
ically by the system:
GS.create(componentClassName)

Using a virtual node: the programmer specifies a virtual node which the
component should be deployed on:
GS.createOnVN(componentClassName, vn)

Manual, by specifying a concrete location, e.g.
GS.createConcrete(techInfo) where techInfo is the descriptor
specifying all concrete information needed to create the component (e.g.
H2O kernel in the case of MOCCA) and to invoke methods on it (e.g.
names of the ports).

All these levels should be supported by the runtime system and might be
combined by the programmer, e.g. to specify a concrete location for a mas-
ter component and let the system automatically select resources for worker
components from the available pool.

3.3 Framework interoperability

The scripting API for composition and deployment of components is neutral
with respect to the used component model. Script invocations are translated to
underlying Fractal, CCA or CCM APIs. If more than one component model
is supported, it is possible to combine components from different models
into a single application. In the case of a component workflow, the runtime
system is the central point of inter-component communication, so it acts as an
intermediary passing results from one component invocation to another. It is
also possible to integrate modules developed in other technologies, e.g. Web
services or WSRF in such a workflow. In the case of composition in space, when
direct links between components are involved, it may be necessary to introduce
glue ports between the heterogeneous components, to enable translation of
invocations between them. As our research on interoperability between GCM
and CCA [22] suggests, it is possible to introduce such a generic glue which
can bridge components from different models and frameworks.
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3.4 Optimizing communications

As can be seen in Fig. 2, composition in time requires that all the data has to
flow through the central workflow engine (runtime system), which may lead to
bottlenecks and poor scalability in larger systems. One of the solutions to this
problem is to use a pass-by-reference-like model, where a data object does not
contain actual data payload, but only a reference to that data, e.g. in the form
of a URL. This requires both producer and consumer components to support
storing and retrieving data from URL-specified locations, but then the actual
data transfer can proceed directly between them.

There is however an alternative solution, which involves futures. The state-
ment:

data = generator.getData()
may not block until the invocation is realized, instead creating a promise (a
future) for the actual data. Subsequently, invoking:

result=simulator.simulate(data)
will copy the future reference to the simulator which will automatically re-
trieve the value of the data when the generator computes it (and it will be
automatically blocked whenever the data is needed but not yet computed and
received). In a framework that supports first-class futures, this mechanism is
automatic and transparent, but it could also be implemented specifically for
the script interpreter. Finally, as the value of data is not needed in the script
interpreter, communicating the value to the interpreter could be avoided (this
would correspond to garbage collection of future references).

The mechanism consisting of transmitting a future reference and automat-
ically updating the value has been formalized for ProActive, and the ASP
calculus in [9]. In practice, the ProActive framework partially provides what is
needed in our particular case: futures are automatically created and transmitted
by copy between objects or components, while future update is automatic. If by
relying on ProActive the script interpreter were not to be blocked waiting for the
result of the first invocation, it could proceed to the following phases. However,
the future update strategy currently implemented in the ProActive framework
implies that all copies of the future are updated with the result; consequently, a
copy of the data would also be sent to the script interpreter itself, even if it did
not need this data.

3.5 Prospects for decentralized script evaluation

Another drawback of the script interpreter is that it provides a single central
point for managing all reconfigurations of connections and data communications,
which may become a bottleneck. This issue could be addressed in a hierarchical
component model, such as the GCM, by encapsulating a script interpreter inside
each composite component. An additional construct (subscript) would be added
to the script language that would delegate part of a script to the script interpreter
associated with another component, and would consequently distribute the
induced data communications more evenly.
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Scalability would thus be ensured, but synchronization between those sub-
script interpreters in a real distributed environment may be complex and is out
of the scope of this study.

3.6 Alternative notation for composition in space

Currently, the proposed and implemented API for composition in space re-
quires explicit invocation of connect methods on components. Although the
notation proposed is as concise as possible, we suggest that it would be feasible
to use an alternative notation, similar to the imperative programming as in the
case of composition in time. It would require adoption of a combination of de-
centralized script evaluation and imposing a specific convention on component
code.

As a result of the following statement:
data = generator.getData()

the interpreter should not invoke the method, but only return a proxy to a data
object with the dependency information. Then, the call:

result=simulator.simulate(data)
should be interpreted as a request to create a connection to the port through
which the data could be retrieved:

simulator.inputPort.connect(generator.outputPort)
and then a simulate() call which would actually invoke getData() using the
created binding.

4. Runtime and Development Support

Figure 3. Runtime system of GridSpace

As the goal of our Ruby-based
GScript language is to provide con-
structs for component deployment,
composition and invocation of com-
ponent methods, there is a need to
provide a runtime library. The library
provides information on components
in use and hides the complexity of the
underlying Grid infrastructure. The
architecture of the Runtime system
is shown in Fig. 3. Registry is used
for storing all technical information
about available components, contain-
ers and the state of the Grid resources,
updated by the Monitoring system.
The Optimizer module is responsi-
ble for supporting decisions on (auto-
matic) component deployment. The
role of the optimizer is similar to that
of the deployment framework, as pro-
posed in [11]. The Invoker module
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transparently performs remote calls on component ports of different frame-
works.

The invoker has an extensible architecture which allows plugging in adapters
responsible for interacting with different technologies. So far, we have devel-
oped adapters for communicating with MOCCA and ProActive components, as
well as with Web Services. Support for WSRF services is under development.
We have also implemented an adapter for the MOCCA-ProActive Glue compo-
nents; those glue components allow composition in space (direct connections)
between the two frameworks [22]. This adapter is used in the experiment pre-
sented in the next section. More details on the invoker and the architecture of
the system can be found in [4].

Although programming in a scripting language such as Ruby is convenient,
there is always a need to support the development process with user friendly
tools which assist programmers and help reduce the number of mistakes. For
GScript we offer an integrated development environment based on the Eclipse
platform with the Ruby Development Tools enriched by additional plugins. One
of them is the Registry Browser which lists all available component classes, their
ports and methods. It is connected with a script editor and allows us to insert
automatically-generated code snippets. Another plugin may be used to browse
the component classes categorized using an ontology-based taxonomy. It can
be especially useful when searching for a component based on its functionality
and finding similar components which are available.

The registry is available as a Web service, and stores technical information
about registered components and services. It is also possible to use a local
registry, which stores the same information in the Ruby script format, which is
useful for quick development and debugging.

The current prototype of the optimizer allows us to specify an optimization
policy (goal) in a pluggable way, however no advanced algorithms have been
implemented so far.

5. Experiments

The prototype functionality has been verified on a number of testing compo-
nents using sample scripts demonstrating the functionality of the whole runtime
system. One of the scenarios includes a scientific application used for simu-
lation of clustered gold atoms. The application was initially developed using
the MOCCA framework [23] alone and in the scenario depicted in Fig. 4 it
was possible to plug an alternative output generator component, developed
using ProActive, into the running application. A sample script which creates
a ProActive output component oComp and connects it to the running MOCCA
component subsystem (wrapped in wComp) is shown in Fig. 5 (techInfo details
are omitted).

The runtime system of GridSpace serves as the engine of the Virtual Labo-
ratory, developed for the ViroLab project [12]. The scripting notation is used
to develop experiments in bioinformatics and virology, including data access,
genetic sequence analysis, drug resistance prediction and data mining [28, 8].
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6. Conclusions and Future Work

In this paper we presented the concept of a high-level scripting language
for programming component applications on the Grid. By using a dynamic
interpreted language approach, it is possible to design a flexible and powerful
notation, which covers the aspects of deployment, space and time composition,
parametrization and configuration of components. The scripting approach
can be applied to the process of rapid application development, prototyping
and conducting scientific experiments on the Grid. A prototype which was
developed demonstrates the feasibility of the proposed solution.

As our discussion in Section 3 suggests, it is possible to enrich the scripting
model with decentralized and lazy script evaluation. In the case of composition
in time, this may lead to an optimized communication pattern in workflow
execution, while for composition in space it suggests an interesting alternative
notation for dependency specification. This approach is worth further investi-
gation, especially in the context of decentralized and hierarchical component
environments for the Grid.

Future work also includes enriching the programming language with a set
of constructs for parallel execution, development of deployment automation
(optimization algorithms) and expanding support for other technologies. An-
other interesting open prospect is the possibility to deploy developed scripts as
new components which may be subject to further composition. Such compo-

Figure 4. CCA simulation running in MOCCA connected to a ProActive component
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# create component from tech info

wComp = GS.createConcrete(wrapperTechInfo)
oComp = GS.createConcrete(outputTechInfo)

# bind output to the wrapper
oComp.UsesMoleculePort.connect(wComponent.MyMoleculePort)

# start wrapper component
wComp.startFc()

# start output generator component
oComp.startFc()

# Invoke Go port
wComp.go();

Figure 5. Script for connecting the ProActive OutputGenerator component (oComp) to
the running components of the application running in MOCCA and wrapped as a composite
ProActive/MOCCA component (wComp).

nents could then be reused in more complex applications, as suggested by the
GridSpace [17] concept.
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Abstract This report presents the design and implementation of a middleware for building
large-scale, dynamic, and self-organizing distributed applications for the Internet.
First, we identify the challenges that are faced when building this type of appli-
cations and the constraints imposed on the middleware that is to support them.
We derive a set of essential services that are to be provided by our middleware
in order to facilitate the development of distributed applications. These services
include scalable communication, failure detection, name-based overlay routing,
group communication and a distributed hash table abstraction. We present the
event-based component-oriented architecture of the system, discussing the de-
sign choices that we made in order to meet the aforementioned challenges and
constraints while providing the essential services for distributed applications.
We describe in detail the event scheduling mechanism, the communication and
failure detection, as well as the interface to applications and other miscellaneous
services.
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1. Introduction

Internet-scale distributed applications and services such as wide-area storage
systems [12, 6, 15], content distribution networks [5, 9], media streaming
systems [17, 14, 3] or peer-to-peer and GRID computing and resource sharing
systems [1] have motivated considerable advancements in the research on
large-scale distributed systems in the last few years. Quite often, cooperating
computer nodes that form these distributed systems are organized in an overlay
network operating over the Internet.

Building real implementations of this type of systems poses a common set of
challenges. First, given the nature of the provided services, these applications
should accommodate a large number of users and participating machines. Thus,
their implementation should be scalable in terms of the size of the network and
the communication, storage, and computational load they are subjected to.

Second, these applications should operate in an environment of dynamic
membership, where nodes are constantly joining, leaving the network or failing.
Hence, the applications need to be fault-tolerant. Nodes should accurately
detect the failure of neighboring nodes and act accordingly. Moreover, these
applications should accommodate dynamic peer connectivity, and be able to
continuously maintain certain connections and garbage collect others.

In order to facilitate the development and quick prototyping of new large-
scale, dynamic, and self-organizing distributed applications, we decided to
build a middleware library that provides basic reusable services for this type of
applications and encapsulates solutions to the aforementioned set of challenges.

DKS, the middleware that we have implemented provides the following
services: a distributed hash table (DHT) indexing service, that allows for
storing and retrieving <key, value> pairs, an overlay network allowing for
reliable name-based routing of messages, and group communication services.
In addition, we provide lower level essential services like failure detection,
timers, and web-based testing support.

Implementing a middleware library brings certain constraints. Large-scale
systems imply a certain degree of heterogeneity in the performance and capacity
of participating machines. In order to accommodate this heterogeneity the
library should be as lightweight as possible, thus it should have a low memory
footprint and should use a number of threads that accommodates the number of
processing cores available on the machine where the middleware is executed.
Moreover, it should be extensible and easily integrated with applications.

In the following sections we discuss the services provided by DKS and then
we describe the DKS system architecture.

2. Middleware services

We have derived a set of middleware services that we believe are essential
to any large-scale distributed application, and which, if available, facilitate the
quick implementation and deployment of new distributed algorithms.

First of all, application nodes need a reliable and efficient communication
infrastructure for point-to-point communication and name-based routing. Sec-
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ond, they need to detect the failure of peer nodes in a timely manner and take
fail-over measures. Extending these basic abstractions, we believe many appli-
cations would benefit from the use of a distributed index provided by a DHT
service or from a group communication abstraction. Also, DKS provides timers
handling and built-in support for application testing. We now look at each of
these services in turn.

2.1 Reliable name-based communication and routing

The application nodes running the DKS middleware form a structured overlay
network (SON). Each node can be addresed by a name that is actually a numeric
identifier.

DKS provides both point-to-point message passing and message routing
through the overlay network while hiding the connection management from
the application. Messages can be sent to node names, the sender not having to
know the Internet address of the receiver. For point-to-point communication,
new temporary connections are established automatically if needed. Endpoints
of each connection negotiate whether any of them needs the connection to be
permanent or temporary. Temporary connections are automatically garbage
collected and closed if not used for a certain period of time. Permanent connec-
tions are established between overlay network neighbors, for instance, but the
application can chose to make a connection permanent should it be used for a
longer time, to avoid connection establishment trashing.

The overlay network topology is induced by the Distributed k-ary Sys-
tem [10] DHT. The topology is maintained automatically and it is used for
name-based routing of messages.

2.2 Failure detection

In order to be able to tolerate failures, applications need to detect them first.
A node failure detection service is thus crucial for a distributed application.
Due to the possibility of network congestion and message loss in the Internet,
no bound on transmission delay can be guaranteed thus it is impossible to
implement a strongly accurate [4, 11] failure detector using predefined message
acknowledgment timeouts. Therefore, DKS provides an eventually perfect
failure detector, which adapts its timeouts, hence its accuracy, to the variation
of network latency, for each connection, thus for each neighboring node in
part. At times it can falsely suspect alive nodes to have failed, due to temporary
increased network latency, but eventually it adapts and resumes accurate failure
detection.

2.3 Distributed hashtables

Distributed hashtables (DHTs) are an essential component of robust large-
scale distributed systems. They provide a directory/index service in the form of
a hash table abstraction, which distributed applications can use to reliably store
various kind of meta-data. Data items in the DHT are replicated to keep them
available as nodes join and leave the system.
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The basic DHT operations are storing <key, value> pairs and retrieving the
values associated to a key. DKS also provides bulk operations [10], whereby the
storage or retrieval of a set of items is optimized in terms of message complexity.

DKS provides multiple DHT tables, with different characteristics such as
replication degree or worst-case routing complexity. We are currently working
on providing a transactional database abstraction on top of the DHT.

2.4 Group communication

Exploiting the structure of the overlay network, DKS provides an efficient
overlay broadcast service as well as pseudo-reliable version of it [10]. Broadcast
messages reach all nodes in the overlay network in a number of communication
steps that is logarithmic in the size of the network, with no redundancy. A
broadcast with feedback operation is also provided. This allows any node to
aggregate global information from every other node in the system.

2.5 Other services

DKS provides testing support for overlying applications by means of a
built-in web-server instance in each application node. Applications can expose
internal state though dynamic web pages published on the server. From a central
testing node, a script can automatically web-browse application nodes and assert
the validity of their published internal state.

Another service provided by the DKS middleware is the management of
timers. DKS allows overlying applications to register and cancel timers and
triggers notifications on timers’ expiration.

3. System architecture

For reasons of modularity, readability and easy maintainability the DKS
middleware is structured into components. Each component implements one
service that it provides to other components through an event-based interface.
In general, components are event-driven but there are some exceptions. For
instance, components that deal with I/O operations or timers are control oriented
and have their own thread of control.

Event-driven components are implemented as Java objects. They are com-
prised of some local state variables and a set of event handlers, which are
ordinary Java methods. Each event handler handles events of one type. Events
are ordinary Java objects and event types are Java types (classes). An event
handler is executed whenever an event of the corresponding type is triggered.
Event handlers are executed by the worker threads of a thread pool of adjustable
size. While being executed, event handlers might trigger other events.

Triggering and execution of events relies on a publish-subscribe mechanism.
Components subscribe for all the event types that they can handle. Whenever a
new event is triggered, it is published for scheduling and when scheduled, the
corresponding event handlers or all components that had subscribed for that
event type are executed.
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Figure 1. General Architecture of the middleware

An event subscription contains a reference to the subscriber component
instance, a reference to the event handler method, and the event type for which
the subscription is made. All event subscriptions are stored in a hashtable
indexed by event type. In fact, a set of subscriptions is associated to an event
type as there can be more than one component subscribing for the same event
type.

Figure 1 shows a graphical representation of the middleware’s architecture.
The services mentioned in the previous section, such as overlay routing and
group communication, are provided by single components, which interacts with
each others using events of specific types.

3.1 Event scheduling

When an event is triggered a new event instance is created and placed on an
event queue. The event queue is a priority queue and is used for prioritization
of events. Events can have one of three priorities: low, medium, or high. By
convention timer expiration events are given high priority, middleware events
are given medium priority, and application events are given low priority. In
general, high priority events are scheduled before medium and low priority ones
and medium priority events are scheduled before low priority ones. However,
to avoid starvation of low priority events we implement the following fairness
mechanism: not more than f events are consecutively scheduled from a higher
priority queue if there exist events in lower priority queues. f is a fairness
parameter.
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When an event is dequeued for scheduling, its type is looked up in the
subscription table and all subscriptions are retrieved. For each subscription in
part a work item is created and submitted for execution to the thread pool. A
work item is a unit of work that can be executed by a worker thread in the thread
pool. It consists of the event instance that needs to be handled and references
to the component instance and handler method that need to be executed for
handling the event. A worker thread that processes a work item will invoke
the handler method on the specified component instance passing it the event
instance as an argument.

While invoking an event handler method on some component instance, a
worker thread locks that particular component instance. This enforces that
one component instance executes only one event handler at a time so the
component writer does not have to deal with concurrency. We can say that event
handlers execute atomically with respect to each other, or that components are
concurrency-safe.

3.1.1 Event consumers. Components subscribe to events by type. As a
result, a component that subscribes to one event type will handle all events of
that type. Some components need to exchange messages with their peer compo-
nents in other application nodes. Message sending and receiving is handled by a
communication component. Whenever the communication component receives
a message, it triggers a message received event. If all components that handle
messages subscribed to this event, many of them would only handle it to find
out that it contains a message they are not interested in. Therefore, to avoid this
event trashing, we introduce the notion of event consumers.

Certain events, like the ones encapsulating received messages, may have as-
sociated with then, a consumer. A consumer is a pair containing the component
designated to handle the event, together with its event handler method. If an
event has an associated list of consumers, these will be scheduled to handle the
event, together with other subscribers for the event type.

Currently, this mechanism is only used for events encapsulating messages.
Components handling messages register as consumers by specifying a message
type and a message handler method. Consumer registrations are kept in a
hashtable indexed by message type. Whenever a message is received, based on
its type, the list of consumers is retrieved from the consumer registry and all of
them are scheduled to handle the message.

The consumers mechanism is a mechanism for message scheduling. Like
events, messages have types, and different components handle different types
of messages. Registering as a message consumer is the analogue of subscribing
for an event type. The alternative approach to message scheduling would be for
every message to be an event and use the event scheduling mechanism.

3.1.2 Component mutual exclusion. There exist situations where mul-
tiple components need to access some shared state. Typically, the shared state
resides in one component and needs to be accessed by other components. As
we execute components concurrently in the thread pool, we may introduce
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race conditions on the shared state. To avoid such race conditions, we want to
prevent executing a component event handler that is accessing state of a running
component and delay its execution until the conflicting running component has
finished executing its handler.

When subscribing for an event type, a component A registers an event handler.
At the same time it has to state what other component’s (say B) state that handler
accesses. We assume that all handlers of component B access the state that the
handler of component A accesses. Thus, the handler of component A cannot
run concurrently with any handler of component B. We say that the handler of
component A depends on the handlers of component B and vice-versa. All such
dependencies are stored in a dependency table. For each event handler we have
a dependency set consisting of all the handlers the respective event depends on.
These dependency sets are created both ways at handler subscription time.

The scheduler maintains a set of running handlers. Whenever a new event
handler is to be executed, its dependency set is intersected with the set of
running handlers and the new event handler is executed only if this intersection
is empty. Otherwise, the coresponding work item is placed in a waiting set.
Whenever one of the running handlers finishes executing, the waiting set is
inspected for handlers that are now ready to execute.

3.2 Communication

A communication component handles the sending and receiving of messages
between middleware nodes over TCP connections. Middleware nodes are
addressed by a reference comprising of their Internet address and overlay
address. The communication component provides the service of sending a
message to a specified node reference by handling the corresponding event
and triggers a message received event when a new message is received from a
remote node. In providing these basic services the communication component
hides the connection management from the other components of the middleware
and from the application.

Hidden connection management includes initiating or accepting a new con-
nection that is needed to send a message, periodically garbage collecting not
recently used connections, and tie-breaking when two nodes have open two
different connections to each other simultaneously, by closing one of them.
Every middleware node listens for incoming connections on a TCP port that is
part of its node reference.

The communication component also offers explicit control to connection
management to other components. Connections are tagged as permanent or
temporary. Permanent connections are never closed while temporary connec-
tions are subject to garbage collection. Other components can change the status
of a specific connection through specific events. The status of a connection is
negotiated with the other peer and a connection can be made temporary only if
both end-points agree that they don’t need it as a permanent connection. Auto-
matically created connections are initially temporary, but other components can
also explicitly create permanent or temporary connections. For instance, a node
should have permanent connections to its neighbors in the overlay routing table.
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3.2.1 Message transmission and reception. Message transmission and
reception is done with a selector model rather than with a thread per connection
model. This is mainly because as the middleware node is part of an overlay
network it may have a considerable number of neighbors and therefore many
open connections. Having one thread per connection would lead to a too large
number of threads in the system and to considerable context-switching over-
head as the Java threads are heavyweight threads. Hence, the communication
component contains its own thread that blocks on all pending I/O operation
and immediately unblocks and handles I/O operations that become ready. This
mechanism enables scalable communication.

Message transmission and reception is done by copying message bytes from
memory buffers to socket buffers and vice-versa. The selector thread blocks on
a receive operation until some bytes are available in the receive socket buffer. It
can also block on a transmit operation if the transmit socket buffer is full.

We use direct memory buffers for efficient communication as the Java Virtual
Machine make a best effort to perform native I/O operations on direct buffers,
avoiding extra byte copying. However, direct buffers have a higher allocation
cost than normal buffers. For this reason we pre-allocate a pool of direct buffers
at component initialization time. Buffers are acquired from the buffer pool as
they are needed and released back thereafter.

Each connection may have an active I/O operation and some state associated
with it. When the respective I/O operation becomes ready, the selector continues
the operation (by sending or receiving some bytes) and updates its state. Hence,
the selector transmit and receive operations are state machines. Whenever all
bytes of a message have been received, and are available in a list of buffers, they
are passed to a marshaler component for unmarshaling. Each connection has an
associated queue of messages to be sent. These are already marshaled messages
and are represented as lists of buffers. Whenever all bytes of a message have
been sent, the next message is dequeued, a message header is composed and
sent and then the bytes of the message are sent. The communication component
guarantees FIFO message transmission which is relied upon by the failure
detector and some of the DKS [10] protocols.

Message headers are 9 bytes long and include the message type, the message
sequence number and the payload length. All messages are acknowledged.
This enables the continuous estimation of the round-trip time (RTT) of each
connection which is used for failure detection (see Section 3.3).

When triggering the sending of a message, other components can subscribe
to notifications. They can be notified, through a specified event, either when all
the bytes of the message have been sent or when the message receipt has been
acknowledged.

3.3 Failure detection

As our middleware nodes are to be deployed over the Internet which behaves
as a partially synchronous network [11], we provide an eventually perfect [4,
11] failure detector. This failure detector triggers suspicion events when it
suspects that a peer node has crashed, and rectification events when it finds



DKS: Distributed k-ary System Middleware 331

that the suspicion was in fact a false positive. False positives can happen in
the Internet where most of the time the message transmission delay is bounded
but sometimes, due to congestion, messages or acknowledgements may take
longer than expected to arrive, thus resulting into a timeout and triggering a
false suspicion.

The failure detector relies on a prediction of round-trip time for each con-
nection in part. As all messages exchanged by the middleware are acknowl-
edged, the RTT can be measured for each sent message. For each connec-
tion the average RTT is kept together with the RTT variance. These val-
ues are used to compute an expected round-trip timeout (RTTO). RTTO =
E(RTT ) + 4 × V AR(RTT ). This timeout value is used to set a timer every
time a message is sent. If the timer expires before an acknowledgement is
received, the peer is suspected to have crashed. If an acknowledgement is
eventually received, the RTTO is recomputed to adapt to the new RTT. If an
acknowledgement is received before the timer expires the timer is just canceled.

In the case when the local peer doesn’t actively send messages to the remote
peer, the failure detector periodically sends ping probes awaiting for pong
acknowledgements within a timeout of RTTO milliseconds. From the failure
detection point of view, pings are equivalent to ordinary messages and pongs
are equivalent to message acknowledgements. The local peer waits for γ
milliseconds from the time it receives a pong until is sends the next ping. No
ping is sent if the remote peer is suspected, but the local peer awaits for the
pong to the last sent ping.

As the failure detection mechanism closely relies on the RTTO estimation,
computed per each link in part, and on message acknowledgements, it is imple-
mented inside the communication component. Because each connection may
have a different expected RTTO we have a failure detector instance for each
connection in part.

If the local peer sends a sequence of messages, only the first message is used
for failure detection. From the failure detection point of view, all messages sent
before the acknowledgement to the first sent message is received are ignored.
This behavior relies on the fact that connections are FIFO.

3.4 Application interface

Applications making use of the middleware may interact with it in two
different ways. One way, suitable for new applications, is to fit the application
to the middleware architecture, that is, to have a component-oriented event-
driven application.

For applications written in a control-oriented manner we provide an inter-
facing component whose role is to provide blocking calls to the application.
Typically, middleware services are used by triggering a request event. When
the service operation has been completed a response event is triggered by the
middleware. The interfacing component wraps this event-based interface into
a blocking call interface, thus every service is made into a call which starts
by triggering the corresponding request event and then blocks awaiting for the
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response event. Handling the response event results in the middleware call
returning to the application.

A middle ground between a fully synchronous interface and having a com-
plete event-based application is an asynchronous interface for control-oriented
applications. That is, request events are triggered by the application but the ap-
plication does not have to block waiting for the response event. It can continue
to run and can later check whether the response event has been triggered or not.
The check can be blocking or non-blocking, that is if the response event has
not been triggered yet, the application can either block awaiting it or continue
to run and check again at a later time. This way, the application can trigger a
number of middleware services, whereby the response events are stored in a
mailbox that the application checks.

3.4.1 Web-based testing support. The middleware includes a web-
server which serves pages with statistics and state of the middleware com-
ponents.By default, the web-server replies with a human readable web-page
containing statistics about the open connections, failure detection and status
of some of the middleware components. However, every component including
application components can publish their own dynamic pages on the web-
server. These pages should have an easily parsable format and should contain
<variable,value> pairs. Thus the value of certain variables can be automatically
asserted from a unit testing framework which can browse the middleware nodes’
web-servers and retrieve interesting state information.

4. Performance evaluation

We have evaluated the performance of some of the services provided by
our middleware by running it on a cluster of machines with Intel Xeon CPUs
running at 3GHz and equipped with 4GB of RAM. We conducted experiments
to measure the performance of the communication component, the group com-
munication component, the overlay routing and the event scheduling capacity
of the system.

4.1 Point-to-point communication performance

We evaluated the communication component by measuring the message
forwarding performance of a node. For this purpose, we set up a network of
three nodes: the first node A sends messages to a second B, which then forwards
them to C. Node C collects the messages and measures the number of messages
received per second, i.e. how fast messages are forwarded by B. For providing
a deeper understanding of the communication component’s performance, we
conducted a number of experiments with different message sizes. The test’s
result is shown in Figure 2.

4.2 Overlay routing performance

We tested the performance of our overlay routing system by issuing a fixed
number of lookups to random identifiers in an identifier’s space of size 1024.



DKS: Distributed k-ary System Middleware 333

4000

5000

6000

7000

8000

e
s
p
e
r
se
c
o
n
d

0

1000

2000

3000
M
e
ss
a
g
e

Message size (bytes)

Figure 2. Message forwarding capacity

2000

2500

3000

3500

4000

o
r
2
0
0
0
lo
o
k
u
p
s

is
e
cs
)

0

500

1000

1500

2000

20 25 30 35 40 45 50 55

T
im

e
e
la
p
se
d
fo

(m
il
li

Overlay network size (nodes)

Figure 3. Lookup performance’s test result

We then measured how long it takes, on average, to receive a reply from all
the responsible nodes. Figure 3 shows the results of the aforementioned test
with 2000 lookups for random identifiers for different numbers of participating
nodes in the network.

4.3 Event scheduling performance

To measure the performance of the middleware’s scheduler, we created a
simple system with two components: one that triggers a number of events and
another one which handles them and measures how fast they are delivered.
Given this test configuration, we injected 500 thousand events from the first
component and found out that they were delivered to the second component in
2,015 seconds, on average. This gives a mean of 248.139 events delivered per
second, which represents approximately the average load which the scheduler
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is able to handle plus a small overhead, which comes from the actual execution
of the second component collector’s handler.

5. Conclusion and future work

We have presented the architecture of the DKS middleware library, the
constraints and deployment environment challenges that motivated our design
choices, and described the services that it offers for building large-scale, dy-
namic, and self-organizing distributed applications. We argue that this set of
services benefits most applications of this kind, and permits the rapid proto-
typing of new ready-deployable applications while avoiding reinventing the
wheel.

We are currently evaluating our DKS system implementation using the
ModelNet [18, 13] network emulator with a network model built from real
Internet measurements [16, 7, 8].

As future work, we plan to enrich the set of services provided by the DKS
platform and also to fit a reflective, hierarchical component model, like Frac-
tal [2], to the DKS architecture, to allow for dynamic software reconfiguration.
We are working on building a transactional database on top of the DKS DHT.
We also work on optimizing the overlay network for latency by providing
proximity-aware routing schemes. Finally we plan to add UDP communication
support and middlebox1 traversal support.
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Abstract Computational grids combine computers in the Internet for distributed data
processing and are an attractive platform for the data-intensive applications of
bioinformatics. We present an extensible genome processing software for the
grid and evaluate its performance. Our software was able to discover previously
unknown circular permutations (CP) in the ProDom database containing more
than 70 MB of protein data. A specific feature of our software is its design as a
component: the Alignment HOC, a Higher-Order Component that makes use of
the latest Globus toolkit as grid middleware. Besides genome data, the Alignment
HOC accepts plugin code for processing this data as its input, and contains all
the required configuration to run the component on top of Globus, thus, freeing
the non-grid-expert user from dealing with grid middleware. Instead of writing
data distribution procedures and configuring the middleware appropriately for
every new algorithm, Alignment HOC users reuse the existing component and
only write application-specific plugins. To maintain plugins persistently in a
reusable manner, we built a web-accessible plugin database with a comfortable
administration GUI. The flexible component-based implementation makes it
easy to study CPs in other databases (e.g. UniProt/Swiss-Prot) or to use an
alignment algorithm different than the standard Needleman-Wunsch. For the
efficient distribution of workload, we developed a library of group communication
operations for HOCs.

Keywords: higher-order components, genome processing,sequence alignment,middleware



352 MAKING GRIDS WORK

1. Introduction

Genome processing algorithms which are used for sequence alignment or
protein structure prediction typically compute one or more result matrices and
have the time complexity of O(n2) or higher for sequence length n [12, 16]. The
recently developed hashing-based alignment algorithms, e. g. , SSAHA [13],
offer better performance but these algorithms raster the sequences and ap-
plications that require full sensitivity still need to run one of the traditional
algorithms despite of its complexity. Depending on algorithm and database,
a genome analysis can take several months or even years of calculation time
on a standard computer. A promising alternative platform are computational
grids [7]. However, the proper use of grid technology requires a lot of technical
knowledge, especially with respect to network communication, since a portable
encoding is necessary for all data that is exchanged over the network. Porting
genome processing software to a grid requires additional time and redundant
re-implementations of the same software, distracting the programmer from
developing new algorithms which are interesting for biologists.

In this work we present a component-based software for the efficient pairwise
processing of huge genome sequences. The specific type of software component
we developed is a Higher-Order Component (HOC) [8], called Alignment
HOC, which is configured to run on the grid and accepts, besides genome data,
executable code as parameters from the user over a remote connection. The
purpose of these code parameters or plugins is to adapt the Alignment HOC
to the user’s application, i. e. , different kinds of similarity detections can be
performed by sending to the component different application-specific code
parameters. The Alignment HOC encapsulates all the technical details of the
processing in the grid (e.g. data transfer, data distribution) and allows its users
to specify the application-specific operations by implementing a simple Java
interface.

2. Detection of circular permutations

Circular permuted protein sequences (CPs) occur in a number of protein
families [17] and can be found in all large databases of protein data. Their linear
order may be quite different but the 3-dimensional structure of their resulting
protein and its biological functionality are often the same.

Figure 1. Possible development of a circular permutation

In Fig. 1, A and B are arbitrary subsequences of a protein sequence. The
figure shows an example of one possible development of circular permutations,
by doubling the original sequence and inserting afterwards new start and end
codons (tri-nucleotide codes that define begin and end of a gene expression [10]).
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Such a circular permuted sequence consists of two parts from the original
sequence, but in a different order [4].

The problem with circular permuted sequences is caused by the non-linear
rearrangement of the amino acid order. Different from other mutations like
insertions or deletions of single amino acids, a CP shifts the beginning of the
sequence to the end. Standard alignment algorithms will not detect a significant
similarity between the original and the circular permuted sequence (shown in
Figure 2), although the tertiary structures (the 3-dimensional folding of the
amino acid chain) of the resulting proteins may be nearly the same.

Figure 2. Standard alignment of a circular permuted sequence

In order to find these similarities, the whole database must be processed by a
sensitive algorithm, adjusted for the non-linear sequence rearrangement of CPs.

2.1 Implementation of the Genome Analysis Algorithm

CP detection is the locating of protein sequences, which are highly similar to
each other after the circular permutation (see Sect. 2) has been made undone.
We implemented two CP detection algorithms, one working on sequences of
protein domains (domains are functional units in a protein consisting of up
to several hundred amino acids), the other processing the underlying amino
acid sequences. The domain variant of our implementation is similar to a
hashing-based method, such as SSAHA [13], as both use highly shortened
representations of the processed sequences (domain IDs instead of hash values,
in our HOC).

Both CP detection algorithms have their advantages and disadvantages in
different applications. Thus, we implemented both of them as code parameters
for the Alignment HOC, i. e. , our Alignment HOC can be used for processing
either domain data or amino acid strings. The code parameters (which we
provide in a Web-accessible database) contain the code for the input format-
relevant operations. In different applications, users can interchange the code
parameters by selecting via a Web service the one which is appropriate for
processing their application input.

Our code parameters for the Alignment HOC perform the following three
main steps:

(a). An optional preprocessing of the input sequences, e. g. , for on the fly
translation from DNA to amino acids or vice versa.

(b). Calculation of a scoring matrix wherein each element holds the result of
a user-defined scoring function that rates differences between pairs of
protein residues (i. e. , elements of the genome code) and is applied to the
two subsequences, delimited by the matrix elements’ indices.
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(c). The detection of traceback paths, i. e. paths following high values in the
scoring matrix which start at the bottom and the right side of the matrix.

A standard global alignment of two similar sequences results in a scoring
matrix with one main traceback path that always starts in the most bottom right
element and runs almost diagonal through the whole scoring matrix. Typically,
there are variations in the diagonal path, since the compared sequences have
point mutations. Fig. 3, left shows a traceback running straight along the middle
diagonal. Optionally, users can easily adapt the Alignment HOC to perform
more specific kinds of preprocessing, alignment and traceback: each of the three
steps above is performed inside the code parameters of the Alignment HOC,
i. e. , users can modify the alignment steps in the same way as they can choose
between processing protein domains or amino acid strings via the selection of
the code parameters required for the application.

Figure 3. Standard alignment (left) and CP detection algorithm (right)

The right part of Fig. 3 shows what the Alignment HOC does in the traceback
step when users select our non-default traceback code parameter which we
implemented for CP detection. In case of a circular permutation between two
compared sequences, the first part of each analyzed sequence is strongly similar
to the last part of the other sequence. Instead of one main traceback path, an
alignment between two circular permuted sequences has two traceback paths
starting from two local maximum scores, one in the bottom row and the other
one in the rightmost column of the scoring matrix. If such two maxima cannot
be located, since there is almost no variation in the matrix, the sequences are
not circular permutated.

Our traceback code parameter for detecting CPs tests the matrix with respect
to the criterion traceback paths run almost along shifted diagonals as follows:
we start from the two maxima, follow the high scores and count the number of
quandrants passed on these paths. The test is positive, if there is no intersection
(i. e. , a common element) and both paths pass three quadrants.

To avoid false-positive detections of CPs, both compared sequences are
doubled before the scoring matrix is calculated. Figure 4 shows how we use this
extension to increase the sensitivity of the CP detection: we compare the lengths
of the four line segments which the traceback paths mark by their intersections
with the inner borders of the matrix quadrants. Only if the corresponding lengths
(i. e. , the segments of a single line, such as α and β on the inner vertical border
in the figure) have nearly the same ratio, the CP test is considered to be positive.
Doubling the sequence lengths obviously results in a matrix that is four times
larger, but experiments justify the higher computation costs: tests [17] have
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Figure 4. Detection with increased sensitivity

shown that without doubling the input more than half of the detected CPs are
false-positive results.

We started the implementation of our traceback procedure for detecting
CPs by porting the C program Raspodom [17] (which only works on protein
domains) to Java. Our version of this CP detection algorithm is portable, as
required for the grid, and we were able to decrease the requirements for main
memory, as compared to Raspodom, by 60%. This optimization is realized by
storing only the part of the alignment data that is necessary for CP detection in
the main memory. Instead of working on both doubled sequences at the same
time, our algorithm processes half the sequences separately and, thus, when
a matrix quadrant is computed, only the relevant half of the input is loaded.
Moreover, not all matrix elements are relevant in our application but rather only
the matrix elements which are crucial for choosing the traceback directions; for
each row of the matrix, we, therefore, only store the position of the maximum
element.

Since there are only 20 different amino acids used in the protein biosynthesis,
there are many equal scores, when aligning amino acid sequences (instead of
domains). A high number of matches in a scoring matrix produces noise in
the scoring matrix, i. e. , variations in the distribution of high scores, which
complicates the detection similarities.

Figure 5. Reducing noise by using dynamic match values in the scoring matrix

Fig. 5 shows the method that we have developed to work around the described
similarity noise problem by rating the matches. Whenever input elements
match, a different value than the scoring function output is assigned to the
corresponding matrix element, e. g. , score 1 for a simple match, score 10
for a double match (i. e. matching elements plus a match in the upper left
neighbor cell), score 20 for a triple match and score 50 for four successive
matches on the main diagonal. Thus, our rating counts neighboring matches
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for rating the degree of a match. The exact values chosen for the rating schema
are arbitrary, except for the condition that they range approximately within
the scoring function’s codomain to effectively suppress low similarities in the
aligned sequences.

2.2 Advantages of the HOC architecture

The algorithm from Section 2.1 has a general processing structure but three
application-dependent steps. Thus Higher-Order Components (HOCs) are the
ideal technology for porting this algorithm to the grid.

The schema of the Alignment HOC is depicted in Fig. 6: The client runs an
application that uses the Alignment HOC which computes the alignment on the
remote High-Performance Computers (HPC) with code parameters (e. g. , the
CP-detection traceback) sent by the client.
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Figure 6. Communication between Client, Code Service and Alignment HOC

In the upload step (1), the application code is intermediately stored in the
Code Service, a Web service connected to a database (via OGSA-DAI [14]).
Identifiers specified by the user ( A and B in the figure) are linked to the
uploaded code, making it a code parameter. Users can refer to code parameters
of the Alignment HOC in the client code by the code parameter identifiers.
Both HOCs and their code parameters can be reused in many applications in
different combinations. The code parameter transfer (lower part of the client-
side code) is not necessarily contained in the client application, but it is rather
an administrative action. We developed a Web-based portal allowing to browse
the Code Service and check if a code parameter with the functionality required
for their application is available: if not, then a new code parameter can be
developed and made publicly available using our portal. The transfer can of
course also be handled with hand-written code, if a self-contained client should
be developed that is independent from our portal.

The HOC(A,B)-call in step (2) is an ordinary Web service request that is
served by the Alignment HOC (i. e. , only the primitive identifiers are sent as pa-
rameters, not the code itself, as there is no standard representation of executable
code as a Web service parameter). HOCs execute recurring communication
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patterns. The pattern in the Alignment HOC in Fig. 6 is called wavefront [6]:
a varying number of parallel processes compute matrix elements during the
alignment procedure. For transparently inserting code parameters into appro-
priate positions in the pattern implementation, the Alignment HOC performs
two steps invisible to the application programmer: in the download step (3),
the code that the identifiers refer to is transferred to the HPC hardware (which
are multiple servers communicating via RMI for the Alignment HOC). The
conversion step (4) is performed by the Remote Code Loader which is locally
placed on each execution host and makes the downloaded code parameters exe-
cutable there. This conversion is done by cast operations which assign the code
parameters their proper types, i. e. the interface definitions for the user-defined
initialization, the alignment and the traceback step.

2.3 Optimised group communication

To share the calculation data in the grid, we implemented efficient group
communication procedures for distributed networked computers: a broadcast
and a scatter operation. Our group communication procedures for the data
distribution are based on orthogonal communication patterns [15], which have
been proven to be a very efficient variant of implementing MPI-based collective
operations on local clusters. We implemented the orthogonal patterns using
Java and RMI, allowing to communicate efficiently on a grid platform.

Figure 7. Different group communication structures

Figure 7 shows two examples of group communication for eight grid nodes
(i. e. , networked computers). On the left, it shows a linear group communication
starting from node ’S0’ to the nodes ’S1-S7’, which leads to a bottleneck
on the S0-link. The HOC communication operations avoid the bottleneck
effect by continuously dividing the available nodes into a hierarchy of groups
and subgroups until the deepest subgroups contain only two or less nodes.
These groups can be graphically arranged in rows and columns, therefore,
the name orthogonal communication. The right part of Figure 7 shows the
communication paths used in the HOC-Broadcast in an example with eight
nodes. The horizontal line represents the division in a top and a bottom group,
each containing four nodes. Both groups contain two subgroups represented by
dashed boxes.

During a group communication starting from the node S0, the message is
first passed from the top group to one node in the bottom group (in the example
in Fig.7 from S0 to S4). Inside each of these groups, the message is then sent to
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the subgroups (from S0 to S2 and from S4 to S6). These two send operations are
executed simultaneously. In the third and final step, the message is shared inside
each of the four subgroups. When the group-based communication structure
of the HOC-Broadcast and HOC-Scatter is used, the number of sequentially
communicating processes grows logarithmically instead of linearly with an
increasing number of grid nodes.

Figure 8. Results of the HOC broadcast experiments

Commonly used grid programming libraries, e. g. , ProActive [2] offer group
communication operations, similar to our HOC-Broadcast and HOC-Scatter
operations. Contrary to our implementation, these libraries implement group
communication following a linear structure which leads to decreasing perfor-
mance with a growing number of communicated data and participating grid
nodes. In the ProActive implementation, a broadcast or scatter operation does
not only distribute data, but the data can be immediately processed: any method
in a Java class can be declared a ProActive group operation, and Java reflection
is used to execute the method on multiple hosts while supplying input either in
broadcast or scatter mode [2]. This mechanism provides a convenient abstrac-
tion over network communication, helping the ProActive user to concentrate on
the application-level operations instead of data distribution, but it leads to a cer-
tain overhead. To estimate the overhead of using reflection for running arbitrary
user-defined methods on group-wise communicated data, we experimentally
implemented another set of communication that follow a linear structure (like
ProActive) but do not use reflection. To avoid I/O-delays, we use a thread pool
and start multiple linear sending processes at once. Therefore, our experimental
linear operations are called ‘Multithreaded’ in the diagrams in Fig. 8.

The left part of Figure 8 shows a test involving 16 grid nodes and a growing
amount of data. The right part of the figure shows the same group commu-
nication, but with a fixed amount of data (25 MB) and a growing number of
involved grid nodes. In both cases the advantage of our new HOC broadcast
can be directly recognised from the diagram. Instead of exponentially growing
communication times we achieved linear growth when increasing the number
of involved grid nodes.
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2.4 Detected CPs

Running our CP detection application (see Section 2) using the Alignment
HOC (see Section 2.2) we scanned the protein database ProDom and found
similarities that were not known previously [3].

ProDom Version Raspodom Alignment HOC

2003.1 36 129(40)
2004.1 93 850(192)

Table 1. Number of detected CPs with different databases and algorithms

Table 1 shows the number of detected circular permutations by using our
Alignment HOC and, in turn, Raspodom for two versions of the ProDom
database.

The numbers in parentheses are those CPs where two ore more protein do-
mains are involved in the sequence rearrangement. These results are particularly
reliable true-positive detections, because larger parts of the sequence (at least
two functional parts of the protein) are involved in the rearrangement, allowing
to assure the presence of a CP.

tr|O85019|O8 (horizontal) vs. tr|O05819|O0 (vertical)
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Figure 9. CPs in microbacteria

Two of the newly detected CPs are shown as dot plots in Figure 9. In each
dot plot, the two characteristic shifted diagonals (see Sect. 2.1) are observable
(compare Figure 3). The new CP, shown in the dot plot on the left, compares the
sequences ‘Peptide synthetase MBTF’ (O05819) and ‘FxbB’ (O85019). Both
are parts of mycobacteria genomes, but only the function of ‘FxbB’ is known
in the Swiss-Prot database as part of an AMP binding enzyme family. The
relationship between ‘Peptide synthetase MBTF’ and ‘FxbB’ of being circular
permutations of each other leads to the hypothesis that ‘Peptide synthetase
MBTF’ is also part of the same AMP binding enzyme family with a similar
function.



360 MAKING GRIDS WORK

tr|Q69616|Q6 (horizontal) vs. tr|Q9YPV1|Q9 (vertical)
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Figure 10. Dot plot from Swiss-Prot

The dot plot in figure 10 compares the two nameless sequences Q69616
and Q9YPV1. Both are listed in the Swiss-Prot database as polymerases
but only about Q9YPV1 there is the additional information that it is a DNA-
polymerase. The detected circular permutation between the two sequences
indicates that Q9YPV1 is also a polymerase interacting with DNA. The ultimate
proof about the biological function of the circularly permuted sequences and
their corresponding proteins can only be given by a laboratory experiment.

Our theoretical algorithmic analysis of sequence data allows the detection of
such interesting relationships in the permanently growing databases. Based on
the relationships and hypotheses, laboratory experiments can be done in a more
precise (and cheaper) way, looking exactly for the algorithmically predicted
functions.

3. Conclusions and related work

This paper shows how a genome/protein processing algorithm can benefit
from the calculation power of a computational grid. We developed a generic
component for running any (biological) sequence processing application on
multiple distributed high-performance computers.

The domain version of our implementation is similar to a hashing-based
method, such as SSAHA [13], as both use highly shortened representations
of the processed sequences (domain IDs instead of hash values, in our HOC).
Some other projects are aim at using modern Grid technology (including Globus)
for research in bioinformatics, e. g. , the North Carolina BioGRID [1]and the
GrADS-based implementation of sequence alignment [18]. The main difference
of the HOC-based approach is that each part of the algorithm (the preprocess-
ing, the traceback and the computation of the matrix itself, see Section 2.1)
can be exchanged without affecting the complex infrastructure for running the
distributed computations. The Alignment HOC can, thus, e. g. , be used for
protein structure prediction. The introduction of this new component to the
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HOC-SA [5] is the main contribution in the field of component-based program-
ming, while the new communication routines explained in Section 2.3 and the
newly detected relationships between sequences in the ProDom and Swiss-Prot
databases can be viewed as a useful coproduct. A quantitative comparison (in
terms of detected CPs) with an earlier project (Raspodom [3]) was conducted in
Section 2.4.

Our Alignment HOC is able to handle the pairwise processing of hundreds
of megabytes of data (as present in total genome databases) by distributing
the computations. The calculation power offered by the Alignment HOC
makes it possible to keep up with the exponentially growing size of biological
sequence databases when performing CP detection and other kinds of biological
data analysis applications. The Alignment HOC is available as open-source
software from the Globus Web site [5] (including a GUI and the new group
communication library). It offers biologists new opportunities to easily develop
and adapt the sequence processing in their applications to run on grids.
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1. Introduction

Contrary to traditional grid systems where the maintainers of the grid in-
frastructure provide resources where users of the infrastructure can run their
applications, desktop grids provide the applications and the users of the desktop
grid provide the resources.

The common architecture of desktop grids typically consists of one or more
central servers and a large number of clients. The central server provides the
applications and their input data. Clients join the desktop grid voluntarily,
offering to download and run tasks of an application with a set of input data.
When the task has finished, the client uploads the results to the server where the
application assembles the final output from the results returned by clients.

A major advantage of desktop grids over traditional grid systems is that
they are able to utilize non-dedicated machines. Besides, the requirements for
providing resources to a desktop grid are very low compared to traditional grid
systems using a complex middleware. Thus, a huge amount of resources can
be gathered that were not available for traditional grid computing previously.
Based on the environment where the desktop grid is deployed we can distinguish
between two different desktop grid flavors.

Global Desktop Grids Global Desktop Grids (also known as Public Desktop
Grids or Public Resource Computing) consist of a server which is publicly
accessible over the Internet, and the attached clients are offered by their owners
to help out projects they sympathize with. There are several unique aspects of
this computing model compared to traditional grid systems. First, clients may
come and go at any time, and there is no guarantee that a client which started
a computation will indeed finish it. Furthermore, the clients cannot be trusted
to be free of either hardware or software defects or malicious intent, meaning
the server can never be sure that an uploaded result is in fact correct. Therefore,
redundancy is often used by giving the same piece of work to multiple clients
and comparing the results to filter out corrupt ones.

Local Desktop Grids Local Desktop Grids are to fill the gap between tradi-
tional grids and desktop grids. They are intended for institutional or industrial
use, especially for businesses it is often not acceptable to send out application
code and data to untrusted third parties (sometimes, such as for medical applica-
tions, this is even forbidden by law). Thus, in a Local Desktop Grid the project
and clients are usually shielded from the world by firewalls or other means and
only known and trusted clients are allowed to offer their resources. This envi-
ronment gives more flexibility by allowing the clients to access local resources
securely and since the resources are not voluntarily offered the performance
may be limited but more predictable. However, new security requirements arise
in Local Desktop Grids that require authentication of clients and servers and
establishing trust between parties.

The rest of the paper is organized as follows. The next section discusses
related work, section 3 introduces SZTAKI Desktop Grid and we describe our
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extension of BOINC to be able to support hierarchy. In section 4 we describe
an enhanced BOINC security model. We present the future work in section 5.
Then the conclusion section closes the paper.

2. Related work

Condor Condor[1] is a complex cycle-scavenger platform which is originat-
ing from the Condor research project at the University of Wisconsin-Madison.
Its approach is radically different from the DG model, while aiming for the
same goal. First it uses the push model to submit jobs to the workers, while
the DG model implies using the pull model, where always the clients request
work for themselves. It does not use one of the wellknown ports (defined by
RFC739) for communication, rather has it’s own. Condor provides a complex
matchmaking feature to pair jobs and resources. It trust it’s own resources and
the tasks are mapped to local user on the execute node. Scalability is limited by
the centralized management implied by the push model. Largest experiments
are at the level of 10000 jobs in EGEE[11] but it requires a very complicated
Grid middleware infrastructure that is difficult to install and maintain at the
desktop level.

Berkeley Open Infrastructure for Network Computing BOINC[2] is orig-
inating form the SETI@home project, it aims to provide an open infrastructure
for deploying large-scale scientific projects which are attractive to the public
interest. BOINC is a general framework which can run many distributed appli-
cations and yet anyone can join easily by installing a client software. BOINC
is the most popular DG system with more than 250000 participants and 475
TeraFLOPS.

XtremWeb XtremWeb[4] is a research project, which, similarly to BOINC
aims to serve as a substrate for Global Computing experiments. It supports the
cenralized setup of servers and PCs as workers. In addition it can be used to
build a peer-to-peer system with centralized control, where any worker node
can become a client that submits jobs.

There are several commercial solutions available, the most wellknown being
provided by United Devices and Entropia Inc.[3] . What they have in com-
mon is that they run in isolation, there is no adherence to grid standards or
interoperability amongst them or with any grid middleware.

3. SZDG: A hierarchical BOINC-based DG system

As we can see there is a huge difference between traditional grids and
desktop grids. We also have to make a distinction between the publicly used
Global Desktop Grids and the Local Desktop Grid concept. The SZTAKI
Local Desktop Grid[5] implements the latter. It is based on BOINC and is
aimed to satisfy the needs of both academical institutions and enterprises (there
is also a Global Desktop Grid version[9] running currently with more than
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20000 registered users). What if there are several departments using their own
resources independently and there is a project at a higher organizational level
(e.g. at a campus or enterprise level)? Ideally, this project would be able to use
free resources from all departments. However, using BOINC this would require
individuals providing resources to manually register to the higher level project
which is a high administrative overhead and it is against the centrally managed
nature of IT infrastructure within an enterprise.

Figure 1. Roles in the hierarchy

One of the enhancements of the SZTAKI Local Desktop Grid is hierarchy.
It allows the use of desktop grid projects as building blocks for larger grids,
for example divisions of a company or departments of a university can form a
company or faculty wide desktop grid. The hierarchical desktop grid allows
a set of projects to be connected to form a directed acyclic graph. Work is
distributed among the edges of the directed graph. The projects are ordered into
levels based on the distance between them and the top level.

Every project has a classical parent-child relationship with the others. A
project may request work from a project above (child) or may provide work
for a project below (parent). The hierarchical interaction is always between
a parent and a child regardless of how many levels of hierarchy are above or
below them. For a child every workunit regarded originating from it’s parent
regardless where it is originally from or from where was the input data for
the workunit fetched (the data is not always from the parent). It is allowed
for a project to have more children and parents. Figure 2 shows a three-level
example.

The Hierarchy Client, which is based on the BOINC Core Client, is always
running beside the child project. Thus at the top level there is no need for any
modifications, it is just an ordinary BOINC project. Generally, a project acting
as a parent does not have to be aware of the hierarchy, it only sees the child as
one powerful client. The client reports to the parent a pre-configured number of
processors, thus allowing to download the desired number of workunits. There
can be limitations set on the server side to maximize the allowed number of
workunits downloaded per client, so the only requirement for the parent side
is to set these limits sufficiently high. It has two components (see Figure 2):
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Figure 2. The split architecture of the Hierarchy Client.

a master side which puts retrieved workunits in the database of the LDG and
retrieves the completed results, and a client side which downloads workunits
from the parent and uploads results.

Using a prototype with this functionality we were able to provide basic
hierarchical functionality without any other modifications, but it had several
drawbacks:

the application binaries had to be deployed manually on each level.

since workunits refer to an application by its name and version for execu-
tion, there is no guarantee that there won’t be name collisions between
new and already deployed applications when there are a large number of
applications deployed in the hierarchy.

work distribution is based on the local scheduling[7] method implemented
in the BOINC Core Client which is not ideal in a hierarchical setup as it
was not designed for this task.

4. Extending BOINC for Use in Hierarchy

Although the hierarchy prototype presented in the previous section is very
simple and was easy to implement, it had a major drawback: applications must
be installed manually at every child level in order to be able to process workunits
originating from the parent. Overcoming this limitation also requires replacing
of the security model of BOINC.

The most important factor in desktop grid computing is the trust between the
clients and the project providing the application. Allowing foreign code to run
on a computer always has a risk of either accidental or intended misbehavior.
BOINC mitigates this risk by only allowing to run code that has been digitally
signed by the project the client is connected to. Clients trust the operators of the
BOINC project not to offer malicious code, and digitally signing the application
provides technical means to ensure this trust relation. Of course it is not enough
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to only sign the application binary, the input data must be signed as well (think
of the case when the application is some kind of interpreter and the input data
can instruct it to do just about anything).?Therefore BOINC uses two separate
key pairs: one is used to sign the workunits (which in this context means the set
of input files and a link to the application binary), the other is used to sign the
application code. The private key used for workunit signing is usually present
on the project’s central server, while the private key used for application signing
is usually kept at a separate location. The different handling of the private keys
stems from their usage pattern: the workunit signing key is used very often while
the code signing key is seldom needed therefore it can be protected better. This
technique significantly reduces the risk of compromising the application signing
key even if the machine hosting the project is compromised, but this also means
that installing new applications is a manual process – which is unfortunate for
a hierarchical setup. Therefore, solving the automatic application deployment
issue presents two challenges:

a lower-level project in a hierarchical desktop grid system must be able to
automatically obtain an application’s binary from its parent and be able
to offer the application to its clients without manual intervention, and

this process must not increase the risk of injecting untrusted applications
into the system.

These requirements mean that a lower-level project can not simply re-sign the
application it has obtained from the parent, since that would require the private
key to be accessible on the machine hosting the lower-level project which in
turn would significantly increase the risk of a key compromise if the machine
hosting the project is compromised.

4.1 Extending the Security Model to Support Hierarchy

As discussed above the security model used by BOINC is not adequate in a
hierarchical setup and a new model is needed. The model must provide enough
information for the operator of the client machine (User from now on) to decide
if a downloaded workunit should be trusted to run on the client machine or not,
independent from where in the hierarchy the workunit is originated from. The
model must provide enough information for the following decision scenarios:

(a). The User wants to trust any workunits of applications installed locally
on the BOINC project she is directly connected to (i.e., the User trusts
the project itself). This is the original trust model of BOINC.

(b). The User wants to trust any workunits from a given project, regardless
of how many levels of hierarchy did the workunit travel through. This is
in fact a generalization of the previous requirement.

(c). The User wants to trust a specific application regardless of where in the
hierarchy it is hosted and regardless of what other applications does the
hosting project offer.
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The t(〈subject〉, 〈object〉) trust relation for a workunit can be broken down
to three parts:

trusting the application code: t(User ,App),

trusting the set of input files: t(User , Input), and

trusting the link between the application, its inputs and the desired loca-
tion of its outputs to prevent the application from processing data that
was meant for an other application: t(User , 〈App, Input ,Output〉). We
will use the shorthand WUDesc for the 〈App, Input ,Output〉 triplet.

A workunit WU is trusted if all components are trusted: t(User ,App) ∧
t(User , Input) ∧ t(User ,WUDesc) → t(User ,WU ).

The trust relation is realized by digital signature verification. Therefore, each
of the three classes of objects App, Input and WUDesc are accompanied by
one or more digital signatures SigX : X ∈ {App, Input ,WUDesc}, and it is
assumed that User has a set of trusted identities marked TrustedIDUser . Thus
the trust relation becomes t(User , X) ⇔ ∃s ∈ SigX :
verify-sig(X, s) ∧ subject-of (s) ∈ TrustedIDUser , where the subject-of (s)
function provides the identity that created the signature s. We also allow
special AnyX : X ∈ {App, Input ,WUDesc} elements which satisfy the
∀s : verify-sig(AnyX , s) = TRUE . AnyX ∈ TrustedIDX means that the
user does not require a valid signature for that particular component.

We decided to use the X.509 Public Key Infrastructure, since it is a widely
accepted and used infrastructure that provides all the technical elements we
need. Therefore, the TrustedIDUser set becomes a list of X.509 certificates.

We define 3 entities responsible for signing various components of the system.
The Application Developer (AppDev from now on) can sign application code.
This kind of signature testifies that the application binary comes from a known
source and does not contain malicious code. The Project is the administrative
body of the BOINC project and it may also sign application code testifying that
said application is in fact part of the project. The Server is the machine where
the project is hosted, and it signs input files and workunit descriptors. Using the
original BOINC terms the AppDev provides the code-signing key, while the
Server provides the workunit-signing key.

The TrustedIDUser list of trusted certificates must be determined by the
user, since the trust is ultimately a human relation. This may be simplified by
the Project by providing a list of Server and optionally AppDev certificates
it trusts – this means the user can delegate the trust to the Project . This realizes
the first scenario described in 4.1. The second scenario is realized if the Project
also provides the aggregated list of certificates from all levels above it in the
hierarchy. The third scenario is realized if the user lists only the certificate of
the appropriate AppDev and specifies that she does not care about the signature
of Input or WUDesc.
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4.2 Extending the Security Model for Industrial Needs

The previous section described a model how a user can trust work received
from a hierarchical desktop grid system. In an industrial environment however
more is needed: it is not enough for the user to trust the workunit, but the project
must also trust the user before it gives out possibly confidential information.
Also it is not enough just to trust the receiving user, but the data also has to be
protected from being disclosed to untrusted parties. This is a new requirement
that is not present in public projects.

Protecting the confidentiality of the data can be easily achieved. BOINC by
default uses plain HTTP protocol for communication, but it also supports the
HTTPS protocol where the communication is encrypted. The Server certificate
can be used with the HTTPS protocol to ensure that the User in fact talks to the
server she thinks is talking to. Although BOINC uses a simple shared-secret
based authentication scheme to identify users, this authentication applies only
to interactions with the scheduler. Together with the use of HTTPS this may be
adequate to prevent unauthorized users from uploading results, but it does not
prevent unauthorized users to download application code and input data if they
are able to guess the file name used on the server.

The protection of input data from unauthorized download can be achieved by
giving every user a certificate. The Project can act as a Certificate Authority
and can sign the certificates of all authorized users. Then, the web server
that is used for downloading the input files can be configured to only allow
downloading if the client authenticated itself with a properly signed certificate.
The workunits are always signed by the server running a specific project, so
the projects need a way to make their known and accepted signing certificates
available for their clients and other projects. This is solved by an extension to the
web based interface of the BOINC project allowing to query for the certificates
via the HTTP(S) protocol and depending on the trust model described in 4.1.
Although it is a simple extension on the server side the BOINC Core Client
needs modifications.

4.3 Automatic Application Deployment

BOINC allows the creation of a workunit that refers to external servers for
the input files. This means that lower-level projects in a hierarchy do not need
to install the input files locally, they may just refer to the original location of
the files in the workunit description. However due to security considerations
BOINC does not allow to refer to outside of the project for application binaries,
they must always reside on the project’s server. Thus, lower-level (child)
projects must deploy all applications whose workunits they offer locally.

The automatic deployment of applications presents two problems. The first
problem arises from the need to properly sign the binary and is solved by
the introduction of the AppDev role as described in the previous section. If
the users have configured their TrustedIDUser sets to contain the appropriate
certificate of the AppDev , then the project does not need to sign the application
binary, thus its secret key is not needed for application deployment.
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The second problem arises from the fact that BOINC uses the 〈AppName,
Version〉 tuple to identify applications and in a complex hierarchy it is possible
that at different levels different applications are installed under the same name.
This problem can be solved by automatically renaming the application when
a workunit is transferred from a parent to lower level child project. Using an
Universally Unique Identifier (UUID) as the new application name ensures that
there will be no name collisions.

For the following we assume that the application consists of just a single
binary. Compound applications or applications with accompanying shared
libraries are not considered in this paper. The Hierarchy Client keeps track of
the name mapping of the application between parent projects and child project.
Such a renaming is possible because on the sever side only the workunit-
generating master application cares about the name of the application, and in
this case this master application is the link between the members of the hierarchy
and therefore has full control. Additionally, the following requirements have to
be met for the application registration in a Hierarchical Desktop Grid:

The registration method should be consistent with the original registration
method, allowing already deployed projects to be added to a hierarchy
without any modification and any project to leave the hierarchy anytime.

Different versions of the same application should be allowed to run
in parallel, since each parent may run different version of the same
application.

Since each application instance is tied to a platform, the application name
should be the same for all platforms, allowing any child to query for the
different platform instances of the application.

Instances of the same application originating from different parents
should be treated as different ones, to ensure that results are reported to
the appropriate parent.

The details of the flow of the application deployment and work distribution
are described in [6] .

It is ensured that applications can still be installed manually as in a regular
BOINC project and that will not cause inconsistency between the configuration
files of the project, the database of the project and the Hierarchy Client. There is
one significant difference though: an automatically deployed application is not
signed using the code-signing key of BOINC, instead the signature retrieved by
the Hierarchy Client is used. This requires that the Core Client requesting work
is able to retrieve the certificates (depending on the trust scenario described
in 4.1) from the given project, and is able to validate signatures using the
certificates.
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5. Future Work

Our enhancements improve BOINC in many ways, but there are several
limitations we are aware of. In this section we discuss what we think are the
most crucial challenges.

Sandboxing Another aspect of security that we did not mention yet is isolat-
ing the application from the rest of the computer it is running on. The BOINC
Core Client simply forks a new process for each application it is executing,
meaning that the application process has access to the same resources as the
Core Client itself. In an industrial environment sometimes the data on the com-
puter (confidential information) is needed to be shielded off from the application
code run by the client. To achieve this the Core Client may be run as a restricted
user which also restrict the processes created by it, but in industrial environ-
ments the platform used is often Windows and it is sometimes not enough to
only rely on the operating system facilities to ensure isolation from the rest of
the system. In a UNIX environment the sandboxing can be easily achieved,
since there are several tools like XEN [8] or chroot available. According to our
present knowledge there are no similar mechanisms for widely used versions
of Windows (2000, 2003 or XP) available. A possible solution would be using
virtualization technologies available for all platforms like VMware, VirtualBox
or QEMU [10].

We propose that instead the simple fork mechanism a lightweight virtual
machine with a minimalist Linux image should be started with a virtual machine
monitor like QEMU. This would properly isolate the application from the rest
of the computer of the User. Also because the virtual machine runs Linux
independent of the operating system on the Users computer this way only
a version of the application for the Linux platform would be required that
simplifies application development and deployment.

Scheduling The Hierarchy Client currently uses the scheduling method in
the BOINC Core Client, which is intended for clients requesting work for them-
selves, not for hierarchical work distribution. Currently we are adjusting the
number of processors reported by the client to adjust the number of requested
workunits. Another problem comes from the fact that BOINC assigns a deadline
to each downloaded workunit to prohibit workunit-hijacking by users. The dead-
line is set when the workunit is downloaded and after it passes, the workunit
is considered invalid and resent to another client. The deadline is the sum of
the time of download and a delay bound value. Since each level of hierarchy
is recreating workunits from those it got from its parent for distribution, the
deadline of the original workunit at the top level is not propagated. Thus the
lower level projects have no information if their workunits will be invalidated
on a higher level because the deadline has already passed. A solution would be
to make the workunits carry the original deadline with them via their descriptors
as they traverse the hierarchy. This would allow to give the lower level projects
some idea how to set the delay bound value of their workunits upon registra-
tion.In a hierarchy there is the problem of requesting the exact amount of work.
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If requesting too much, the clients (that may be Core or Hierarchy Clients)
won’t be able to upload them before the deadline passes, if too little, some of
the clients are left without work. We are working on developing scheduling
strategies specific for the Hierarchical Desktop Grid.

6. Conclusion

In this paper we demonstrated how can stand-alone desktop grid installations
be combined to form a large-scale grid system. We described our extensions for
the security model that allows SZTAKI Desktop Grid to fulfill the additional
security requirements that follow from the hierarchical setup and those required
by industrial use cases.
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Abstract In this paper, we discuss how Peer-to-Peer data distribution techniques can be
adapted to Desktop Grid computing environments, particularly to the BOINC
platform. To date, Desktop Grid systems have focused primarily on utilizing spare
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Leveraging client bandwidth will not only benefit current projects by lowering
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1. Introduction

Desktop Grids have been extremely successful in bringing large numbers
of donated computing systems together to form computing communities with
vast resource pools. These types of systems are well suited to perform highly
parallel computations that do not require any interaction between network
participants. Currently, the most successful Desktop Grid systems are volunteer
computing platforms such as the Berkeley Open Infrastructure for Network
Computing (BOINC), which rely on donated computer cycles from ordinary
citizen communities. BOINC is currently being successfully used by many
projects to analyze data, and with a supportive user community, can provide
compute power to rival that of the world’s supercomputers. In the current
implementation of these systems, network topology is restricted to a strict
master/worker scheme, generally with a fixed set of centrally managed project
computers distributing and retrieving results from network participants. The
potentially large user communities that become involved in volunteer computing
initiatives can easily result in large network requirements for host projects,
forcing them to upgrade their computer hardware and network availability as
their projects rise in popularity.

These centralized data architectures currently employed by BOINC and
other Desktop Grid systems can be a potential bottleneck when tasks share
large input files or the central server has limited bandwidth. With new data
management technologies, Desktop Grid users will be able to explore new
types of data-intensive application scenarios, i.e., ones that are currently overly
prohibitive given their large data transfer needs. This lack of a robust data
solution often discourages application developers from embracing a Desktop
Grid environment, or forces users to scale back their applications to problems
that do not rely upon large data sets. There are many applications that, given
more robust data capabilities, could either expand their current problem scope
or migrate to a Desktop Grid environment.

Peer-to-Peer (P2P) data sharing techniques can be used to introduce a new
kind of data distribution system for volunteer and Desktop Grid projects – one
that takes advantage of client-side network capabilities. This functionality could
be implemented in a variety of forms, ranging from BitTorrent-style networks
where all participants share equally, to more constrained and customizable
unstructured P2P networks where certain groups are in charge of data distribu-
tion and discovery. These approaches, although similar in nature, each have
their own distinct advantages and disadvantages, especially when considered
in relation to a scientific research community utilizing volunteer resources. In
this paper, we make the argument for P2P data distribution, discuss the relative
advantages and disadvantages of these two approaches, and explore how they
could be applied to the Desktop Grid community, with particular emphasis on
BOINC.

The paper is organized as follows: section 2 gives background on the tech-
nologies involved; section 4 introduces related work; section 4 discusses how
P2P technologies could be applied to Desktop Grid systems such as BOINC;
section 5 introduces how the BitTorrent protocol could be used in this facil-
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ity; section 6 presents a more complex data center approach; and, section 5
concludes.

2. Background

To begin the discussion on how P2P technologies can be integrated into
Desktop Grids, specifically BOINC, it is advantageous to first give a brief
overview of the software technologies involved. Naturally, there are many [3]
[14][21] Peer-to-Peer technologies available and several different systems that
can be classified as Desktop Grids [1][6][11][15]. However, for the purposes
of this paper, we limit our scope to exploring how the very popular BitTorrent
protocol as well as another in-development secure data center approach can
both be applied to the most widespread “volunteer computing” Desktop Grid
platform, the Berkeley Open Infrastructure for Network Computing (BOINC).

The Berkeley Open Infrastructure for Network Computing (BOINC) [1][4] is
a software platform for distributed computation using otherwise idle cycles
from volunteered computing resources. BOINC’s use is widespread, with many
different and varying projects employing the core infrastructure to distribute
their data processing jobs. The diverse scientific domains utilizing BOINC
range from gravitational wave analysis, to protein folding, to the search for
extraterrestrial life [22]. Although these projects are diverse in their scientific
nature, each one has something in common with the others: they have work
units that can easily be distributed to run autonomously in a highly distributed
and volatile environment. To achieve this task, each project must not only
prepare its data and executable code to work with the BOINC libraries and
client/server infrastructure, but they must also setup and maintain their own
individual servers and databases to manage the project’s data distribution and
result aggregation. BOINC has been highly successful, and to date, over 5
million participants have joined various BOINC projects, giving an overall
computing power equivalent to 450 TeraFlops [2].

BitTorrent [7] is a popular file distribution protocol based on a P2P paradigm.
However, unlike other well-known P2P applications such as Gnutella or KaZaA,
which incorporate peer and file discovery algorithms, BitTorrent’s focus is more
on optimising the distribution of files by enabling multiple download sources
through the use of file partitioning, tracking and file swarming techniques. The
main idea of BitTorrent is the collaboration between users accessing the same
file by sharing chunks of the file with each other. To obtain information about
the file to download, a peer must download a corresponding .torrent file. This
file contains the file’s length, name and hashing information, and the url of a
tracker, which keeps a global registry of all the peers sharing the file. Trackers
help peers establish connections between themselves by responding to a user’s
file request with a partial list of the peers having parts, or chunks of the file.
A tracker does not participate in the actual file distribution; each peer decides
locally which data to download based on data collected from its neighbors.
Therefore, each peer is responsible for maximizing its own download rate.
Peers do this by downloading from whomever they can and deciding which
peers to upload to via a variant of tit-for-tat policy to prevent parasitic behavior.
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The Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (P2P-ADICS)
[16] is a research and development project at Cardiff University, working to
build a multi-purpose and adaptable super-peer architecture for data caching
that can be used by scientific applications to distribute large data files and large
data sets in Desktop Grid environments. P2P-ADICS’s is being designed with
the scientific user in mind, taking into account such issues as customizable
network membership and data security policies, as well as the more traditional
scalability challenges. For its low-level network building layer, P2P-ADICS is
currently relying on a software package entitled “Peer-to-Peer Simplified,” or
P2PS [19], which is also being developed by the same group. Although P2PS is
a light-weight system for building decentralized Peer-to-Peer networks, and is
similar in nature to JXTA, it is more focused on the fundamental network build-
ing tools and provides much simpler mechanisms for advertisement queries and
service discovery. P2PS can be used by a variety of applications to construct
P2P overlay networks, for a variety of purposes, including data exchange and
caching.

3. Related Work

The creation of Condor [15] as one of the first Grid Computing middleware
projects paved the way for numerous Desktop Grid projects, that, instead of
harnessing computational power from clusters on organizations, sought to take
advantage of the internet and distributed desktop users. Many of these projects
follow a centralized architecture [1][6][18], using a data distribution system that
has one (or few when using mirrors) point of failure. To distribute data sharing,
numerous alternatives are available today, in the form P2P file-sharing systems
or data storage systems. In this section we discuss some of the more significant
ones as they relate to the work proposed here.

OceanStore [12] is a global, distributed, Internet-based storage infrastructure.
It consists of cooperating servers that work as both server and client. The data is
split up into fragments which are stored redundantly on the servers. For search,
OceanStore provides the Tapestry [21] subsystem and updates are performed by
using Byzantine consensus protocol. This adds an unnecessary overhead since
file search is not a requisite for BOINC and supporting replication implies the
use of a distributed locking service, which incurs further performance penalties.
Farsite also uses the Byzantine agreement protocol to establish trust within
an untrusted environment. Farsite aims to provide the user with persistent
non-volatile storage with a filesystem like interface, by utilizing unused storage
from user workstations, while operating within the boundaries of an institution.

Freeloader [17] aggregates unused desktop storage space and I/O bandwidth
into a shared cache/scratch space for hosting large, immutable datasets and
exploiting data access locality. It is designed for large scientific results (outputs
of simulations). The overall architecture of Freeloader shares many similarities
to Google File System (GFS). GFS is a distributed storage solution which scales
in performance and capacity while being resilient to hardware failures. GFS
was designed to operate in a trusted environment where the application is the
main influence of usage patterns. The GFS typical file size was expected to be
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in the order of gigabytes and the application workload would consist of large
continuous reads and writes, which does not apply to the BOINC environment.

Gnutella [9] is a decentralized file-sharing system whose participants form a
virtual network, communicating via the Gnutella protocol, which is a simple
protocol for distributed file search. To participate in Gnutella, a peer first must
connect to a known Gnutella host, lists of which are available on specialized
sites.

KaZaA [14] is similar to Gnutella, although it extends upon this by exploiting
peer heterogeneity and organizing the peers into two classes, Super Nodes
(SNs) and Ordinary Nodes (ONs). SNs are generally more powerful in terms of
connectivity, bandwidth, processing processing power, and are not behind NAT
systems. In order to bypass firewall and NAT systems, KaZaA uses dynamic
port numbers along with a hierarchical design where a node can act as a relay
between two other nodes. Like Gnutella, KaZaA’s file discovery mechanism
creates unnecessary traffic and its Super Node architecture applied to data
distribution on BOINC could generate an unacceptable level of network traffic
while relaying requests.

4. Applying a Peer-to-Peer Data Architecture to BOINC

The BOINC architecture is based on a strict master/worker model, with
a central server responsible for dividing applications in thousands of small
independent tasks and then distributing the tasks to participants, or worker
nodes, as they request work units. To simplify network communication and
bypass any NAT problems that might arise with bidirectional communication,
the centralized server never initiates communication with worker nodes; rather
all communication is instantiated from the worker when more work is needed
or results are ready for submission. In the current implementation of BOINC,
data distribution and scaling is achieved though the use of multiple centralized
and mirrored HTTP servers that share data with the entire network.

The centralized architecture of BOINC not only creates a single, or in the case
of mirrored servers, small number of failure points and potential bottlenecks,
but also it fails to take advantage of the client-side network bandwidth and
capabilities. If client-side network bandwidth could be utilized successfully to
distribute data sets, not only would it allow for larger data files to be distributed,
but it would also minimize the needed network capabilities of BOINC projects,
thereby substantially lowering operation costs. To decentralize the current
model as it relates to data, we propose using a Peer-to-Peer data distribution
approach.

When considering the practical application of P2P technologies to the “pro-
duction” BOINC environment, several concerns must be adequately addressed
if the solution is to be successful. For the purposes of this paper, we have chosen
to focus on the following four:

Router Configuration — A Peer-to-Peer infrastructure should have a
way to automatically configure routers or somehow bypass NAT issues
through use of relaying severs,
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Data Integrity — A mechanism for identifying hosts that supply bad
data, and subsequently banning them from the network or having ways to
avoid using them must be included.
Adaptable Network Topology — Ability not only to adapt on the wide
area network, but also to detect and exploit local area network topologies
and relative proximity would be necessary.
BOINC Integration — Any new technology must be easy to integrate
with current BOINC client software, in practice this means a C++ imple-
mentation or binding.

4.1 Case Study of Two Selected P2P Approaches

Applying a P2P data distribution approach could be achieved in a variety of
forms. In this paper, we discuss two implementations: one that uses a centralized
tracker, as in BitTorrent where worker-nodes each share data, discussed in
section 5; and the other that employs the use of decentralized data servers,
built using a super-peer topology that could be configured to limit data sharing
participants based upon project defined security constraints, presented in section
6. In the latter case, these policies could be implemented to have the data layer
mimic the currently used system of a few known and trusted peers, yet would
scale as the network size or data loads increase (by requesting more trusted peers
to become data centers). Either of these types of systems would be especially
beneficial to projects that: have large input files; use the same input file for
several work units; and/or, have limited or slow outbound connections from
the central project server. In the rest of the paper, we will present these two
different approaches in more detail and outline what they would require to be
applied to a BOINC application.

5. Approach 1: Adapted BitTorrent for Data Distribution

In order to integrate BitTorrent in BOINC, the main BOINC server code
remains relatively unchanged but a tracker is needed to co-ordinate the down-
loads. The tracker manages the .torrent file once it is created and acts as the
first seed in the network. On the client side, not only is a BitTorrent client
needed to download and share the file, but changes to the BOINC client code
would be required. This is due to several reasons, but mainly concerned with
the starting and stopping of the BitTorrent client, as well as handling its errors
and managing its execution requirements, such as downloading and rebuilding
files, verifying signatures, and removing obsolete .torrents.

There are some advantages and disadvantages to implementing a pure Bit-
Torrent solution. The advantages are many, for example, BitTorrent has proven
itself to be an efficient and low-overhead means of distributing data; can scale
easily to large numbers of participants; and has built-in functionality to ensure
relatively equal sharing ratios [10]. Some of these advantages, however, turn
into disadvantages when trying to apply BitTorrent to a volunteer computing
platform. Due to its flat topology, BitTorrent works only if enough nodes in its
network are listening for incoming connections, which can prove problematic
when confronted with firewalls and NAT systems. Another potential disad-
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vantage when applying BitTorrent to the volunteering computing platform is
its “tit-for-tat” sharing requirements, which forces most participants to share
on a relatively equal scale with what they are receiving. Although this proves
quite effective for preventing selfish file-sharing on traditional home networking
systems, it is not necessarily a requirement when applying P2P technologies
to volunteer computing. For example, in the volunteer computing case, not
everyone may wish to be a BitTorrent node but they may wish to offer their
CPU time to a project. Therefore, in the pure tit-for-tat BitTorrent world, this
would not be possible.

In the following, the four target issues identified earlier in section 4 are
discussed, with a brief overview of how they relate to BitTorrent integration.

Firewall & Router Configuration — BitTorrent, as other P2P protocols, is
based on a two-way communication between peers. Every peer, seed
or not, is supposed to accept requests for chunks from other peers and
therefore must allow incoming connections, by opening the BitTorrent
port (usually in the 6881– 6889 range) in their routers/firewalls. In a
BitTorrent swarm, should no peer accept incoming connections (including
the initial seed), the system would not work.

There is no easy answer for this problem, faced by most P2P protocols.
If both clients are behind symmetric NATs, the only solution is to use
a relay server, possibly a node with a public IP that would act as an
intermediary between two clients. This methodology is used by Skype,
but it would prove disastrous in this case, given the size of the shared files,
causing an excessive overhead on the relay. For non-symmetric NATs,
hole punching techniques could be used, but it would involve changes
in the BitTorrent core software layer, which is beyond the scope of this
paper.

Malicious Users — The integration of BitTorrent would bring new security
issues to BOINC and create more possibilities for malicious users to
exploit the system. The BitTorrent protocol itself does not strictly enforce
fairness and exploits are possible, but the use of a central tracker decreases
the danger of malicious attacks. Hashing prevents bad data from being
propagated across the network and small chunk sizes can be used to avoid
downloading too much corrupted data. An additional level of security
is provided by certain BitTorrent clients like Azureus [23], that bans
peers who share bad data. The “original” BitTorrent client by Bram
Cohen [7] also incorporates a similar mechanism by default, with the
tag: retaliate-to-garbled-data, which refuses further connections from
addresses with broken or intentionally hostile peers.

Therefore, the main problem with BitTorrent is not in the protocol itself,
but rather in the peer swarms which allow BOINC users to obtain a list
of other users who are downloading the same file (and possibly executing
the same work unit). A client could send consecutive requests for peer
lists to the tracker and build a comprehensive database of peers sharing a
file. Should a user from the list answer the attacker and agree to cooperate
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with him, or become compromised, several negative scenarios would be
possible. For example, both users could report bad results that would
be marked as correct if there were not enough replication. In practice,
this number is not higher than three, so two users would build a quorum.
Alternatively, they could report a much higher computation time/value
than they had to use in an attempt to obtain more credits. A possible
solution for this problem would be a trust-based system, in which peers
would have a reputation based on their past actions.

Exploiting Network Topology — Another possible benefit of the BitTorrent
protocol would be to take advantage of the network topology. Clients
could give a higher priority to peers on the same Local Area Network,
reducing the traffic generated to the outside. Bram Cohen’s BitTorrent
client has an option turned on by default, –use-local-discovery, that scans
the local network for other clients with the desired content. An additional
possibility would be to use an approach similar to that in the Julia Content
Distribution Network [5], in which nodes gather statistics about the
network conditions as the download progresses, and then contact closer
nodes (in terms of latency and bandwidth).

Integration with BOINC — To allow for an easy integration with BOINC,
the current prototype implementation has been completed in the same
language as BOINC, C++. This minimized the conflicts and number
of additional software packages needed. Additionally, a failure in the
BitTorrent data distribution would simply cause a fallback to the standard
centralized nature that BOINC currently implements.

5.1 Proposed Scenario

In this new architecture a BitTorrent tracker is installed on the central server
and a port is defined to receive client requests (normally 6881). We decided
to use a centralized tracker because the decentralized alternative is very recent.
Also, the maintenance and construction of the DHT requires each peer to main-
tain an orthogonal set of neighbors within the DHT and pay the communication
costs of maintaining the DHT in the face of high rates of churn [13]. A .torrent
file is created for every input file that should be downloaded through BitTorrent,
pointing to the tracker in the central server: file.data -> file.data.torrent. The
original file and its torrent counterpart are hosted on a project data server. To
start sharing the file, the BOINC server must run a BitTorrent client to act as a
seed and announce itself to the tracker.

The .torrent file is related to the data file through the work unit. When
creating work, a tag <bittorrent/> is added to the file info of the data file in the
work unit template and the .torrent file itself is added as an input file.

Figure 1 shows the architecture and highlights the steps of a file transfer:
(1) The client contacts the scheduler and asks for work. The scheduler then
replies with a given work unit and a reference to a .torrent file that represents an
input file made available via BitTorrent. The client then downloads the .torrent
file through normal HTTP; (2) After downloading the .torrent file, the BOINC
client initiates the local BitTorrent client with the .torrent as an argument. The
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Figure 1. BT BOINC file transfer

BitTorrent library then contacts the tracker defined on the file and receives list
of peers. (3) Finally, the client contacts the chosen peers and the BitTorrent
protocol is used to download the subsequent file chunks and re-assemble the
input file for processing by the local BOINC client.

This architecture can help reduce the load on the server and possibly improve
transfer times for projects where input files are large and shared by many work
units. It can provide new opportunities for projects that were previously limited
by bandwidth issues on their server and, by improving the data distribution,
speed up the scientific research behind the projects. On the other hand, this
approach is likely to be received with skepticism, if not resistance, for three
main reasons: (i) users are not willing to share their bandwidth when there is no
direct benefit - network utilization is not a contributing factor to the credit ratings
- and the alternative works; (ii) BitTorrent, like other P2P systems, is normally
associated with piracy and illegal downloads, which taints its reputation; and,
(iii) besides motivation, security can also be an issue since, to operate in good
conditions, ports must be opened which increases users’ vulnerabilities (not
necessarily because of the BitTorrent protocol).

Recent experiments on the XtremWeb platform using BitTorrent showed
promise [20] and should be an indicator of what to expect in this case. It is
important to run experiments on a medium to large scale to ascertain the impact
of the BitTorrent protocol on BOINC, as well as to determine the scenarios on
which it will have the best performance. We expect to find a crossover point in
performance in terms of file size and number of nodes sharing the file between
the original BOINC and this version.

6. Approach 2: Super-Peers and Secure Data Centers

BitTorrent can fairly effectively solve the data needs of BOINC as they relate
strictly to distribution. However, it has limited security beyond ensuring file
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Figure 2. Snapshot of example P2P-ADICS network topology after initial discovery phase.

integrity and has no notion of grouping or peer hierarchy. For volunteer comput-
ing communities, security can be a much larger issue than simply guaranteeing
data validity. Due to the sensitive and vulnerable nature of Desktop Grids,
and in particular volunteer networks used for research purposes, whose user
community is volatile, it is critical not only for data integrity and reliability to
be ensured, but also that peer nodes are secure from malicious attacks. This
requires a number of steps and can be implemented in a variety of fashions, each
with its own benefits and tradeoffs. The easiest, and perhaps most susceptible to
attacks, is a pure P2P network, in which any node is allowed to receive and share
information with any other node on the network, as BitTorrent does. Although
this is perhaps the most efficient use of a P2P network and could potentially
reap the largest rewards so far as potential disk space capacity and network
bandwidth utilization, it is also the most dangerous, given its requirements for
opening ports and generalized policy that all nodes participate on an equal level.
Since any node in this scenario has the capability to flood the network with false
information, regardless of whether it is later discarded as invalid, the probability
that this will happen is much greater than in a restricted network, where only
“trusted” peers are allowed to act as data providers and message relaying, or
rendezvous, nodes.

Secure data centers are a way of implementing a super-peer topology for
data sharing that would restrict the set of peers that are allowed to propagate
data. In this scenario, policies could be set by each BOINC project as to which
participants, if any, are allowed to host and redistribute data. Beyond simply
restricting data center membership, policies could also be introduced to govern
the relative sensitivity of data and retention policies. Adding these new types
of functionality would allow for more advanced scenarios, although with the
additional costs of software and network complexity.

The Secure Data Center ideas discussed here are currently in the process of
being implemented in the form of a software middleware entitled “Peer-to-Peer
Architecture for Data-Intensive Cycle Sharing” (P2P-ADICS) [16], which was
briefly introduced in section 2. P2P-ADICS is building a super-peer architecture
for data sharing that focuses on allowing for the dynamic configuration of group
membership. This facilitates creating secured data-caching overlay networks
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that coexist with the conventional super-peer discovery overlay for bootstrapping
purposes.

In this scenario, to implement the data sharing aspects of BOINC, a new
overlay network would be created that contains only those nodes that have
been promoted to data-centers. Within this overlay, data centers propagate data
amongst themselves and serve requests to the underlying worker layer.

Figure 2 gives a visual representation of how the different components in this
network relate to one another after the initial discovery process has taken place.
In this discovery phase (not pictured), a worker node sends a request to known
access points on the data center overlay, which responds with an updated list of
data centers that the worker node can use to harvest data. Failing to discover
anyone, the worker node will directly contact the data provider to request a data
center reference.

In the following, the four target issues identified earlier in Section 4 are
discussed, with a brief overview of how they relate to Secure Data Center
integration and the preliminary implementation states of P2P-ADICS.

Firewall & Router Configuration — Depending on an individual projects
configuration, firewall and router issues could be a potential problem, or
a complete non-issue. In a free-for-all system where any member node
permitted to be a data center, there could obviously be problems with
that node’s being behind a NAT. In this instance the tradeoff between
“punching holes” in the firewall and the potential benefit of the node’s
available network bandwidth would have to be determined. For more
restricted systems, in which pre-specified static or semi-dynamic nodes
are dynamically promoted to be data centers as the network requires,
firewall and router issues could be minimized, for example, through
enforcing eligibility criteria for data centers to only those nodes that have
a publicly addressable network space. In this instance, semi-dynamic, is
referring to nodes that have gone through some pre-screening that verifies
them as good candidates for data-centers, such as obtaining a specific
certificate or accumulated substantial project credits. However, when
they actually perform as data centers is determined dynamically, based
upon network properties.

Current design of P2P-ADICS is working with the assumption that a more
secured sharing will be desired and enforced. This requires data center
peers to be publicly accessible machines, thereby for the moment forgo-
ing the potential pitfalls of attempting to implement automatic firewall
configuration, leaving this as a future implementation issue.

Malicious Users — As with Firewall & Router Configuration, the issue of
how much relative freedom network participants have to manipulate the
network will depend on the individual policies of each hosting project. In
the most restrictive case, the only nodes that would be allowed to propa-
gate data would be well known and trusted, thereby affording the same
level of security currently available in the centralized network. In looser
security configurations, which are configured to harvest more participant
network resources, the security issues would be roughly equivalent to
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BitTorrent as discussed in section 5. The advantage of the system pro-
posed here is that there are middle-ground options lying between these
two extreme alternatives that could be exploited.

P2P-ADICS relies on the data signing and validation procedures currently
utilized by BOINC, which essentially guarantee that requested data will
be what is ultimately retrieved. However, to effectively distribute a single
data file from multiple data centers to an individual host, BitTorrent-style
file-swarming techniques are being investigated. This requires two-level
hashing of data, once on the individual chunks, and once on the entire file.
Therefore, this additional chunk-level hashing is in the process of being
implemented in an attempt to prevent malicious users from propagating
“bad chunks,” to the network.

Exploiting Network Topology — Similar to the mechanisms employed by
BitTorrent and the Julia Content Distribution Network [5], network prox-
imity would have to be determined to adequately map nodes and decide
if any are on a local network. However, if the network parameters are set
to limit the participants to known hosts, then the likelihood of internal
LAN nodes being available to a given peer as a data center is signifi-
cantly diminished. In these cases, a two-tier system of data servers is
envisioned: one, in the traditional case, which meets certain selection
criteria, but is available on the larger network via a public address; and
another which has also met the selection criteria for a “trusted node,” yet
is unavailable to the larger network, but still is available to distribute files
to local peers. Alternatively, LAN data centers could have lower security
requirements placed upon them, as the data is digital signed to verify
integrity. However, this could allow for malicious exploits involving the
reporting of false results should multiple recipients on the same LAN be
given identical tasks to compute.

P2P-ADICS, through its underlying reliance on P2PS, currently uses UDP
multicasting for LAN discovery of data servers, and KaZaA-style “known
peers” for WAN discovery. As the project progresses, technologies such
as those employed by the Julia Content Distribution Network will be
explored for more advanced network topology exploitation.

Integration with BOINC — The Secure Data Center approaches outlined
here, in the form of P2P-ADICS, would demand more radical changes and
a larger software stack than the BitTorrent implementation proposed in
the previous section. This is primarily due to two distinct areas: internal
integration with BOINC and external library dependencies. Regarding
internal integration, the BitTorrent solutions are fairly straightforward:
the centralized HTTP server contact address is simply replaced with
the corresponding tracker. In the off-chance case where no peers are
mirroring the data, the client simply downloads from the centralized
server, as it would have under the current implementation. For P2P-
ADICS, to ensure a comparable level of certainty, an if/else statement
would have to be injected into the client code, whereby if a lookup on the
P2P network failed, clients could resort to traditional download means.
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Although this solution adequately manages the problem, it could incur
severe latencies if not implemented correctly.

Regarding external library dependencies, BitTorrent solutions could only
require the addition of a single C++ BitTorrent library, which could be
used to broker BitTorrent downloads. P2P-ADICS is currently being
built atop P2PS, which is implemented in Java. This creates a client
dependency on a JRE. There are two possible solutions to this problem:
(1) add a JRE to the required software to run BOINC, which could po-
tentially limit adoption of P2P-ADICS; and, (2) create a light-weight
client-side C++ implementation of the P2P-ADICS client download ca-
pabilities, thereby limiting the JRE requirement to nodes that wish to
operate as data centers. The current design and plans for P2P-ADICS is
pursuing option 1 in an attempt to build a working system. It will later
reassess the necessity of option 2 based upon feedback from the BOINC
user-community.

In [8] a more general cycle-sharing paradigm utilizing Peer-to-Peer systems
to distribute work units was presented (authors Kelley and Taylor are in the
overall design of this system, which is led by ICAR-CNR). Although the work
presented there is more generalized, the fundamental “dynamic caching” and
data distribution aspects are consistent with the ones presented here, and the
results and arguments therein can be directly applied to the scenario proposed
here. Specifically, [8] presents an argument that using dynamic data caching,
while knowing the network and data properties, can allow for a more efficient
configuration of data server replication, as opposed to the current static-sized
set used by BOINC projects.

Based upon the preliminary results of [8] and the arguments presented here,
it is our belief that decentralized data centers can prove to be both valid and
useful solutions to distributing data in Desktop Grid environments. There is,
however, a tradeoff between functionality and complexity that needs to be
adequately addressed and balanced if such technologies are to be adopted by
production environments such as BOINC. P2P-ADICS is an ongoing research
project attempting to build a system that can address the needs of scientific
users, while maintaining the benefits of a decentralized network that utilizes
available network properties at much as possible.

7. Conclusions

In this paper we have argued that the current centralized client/server architec-
ture applied by BOINC and other Desktop Grid systems for data distribution is
limiting and costly; these projects would benefit from P2P data distribution tech-
nologies. Specifically, we have presented two approaches for large-scale data
management in Desktop Grid domains: one, based directly upon the BitTorrent
protocol, and another employing a decentralized unstructured P2P network. For
both of these potential solutions, we have provided the reader with arguments
for and against, weighing the relative costs and benefits of uptake, as well as
giving the current status and directions we are undertaking in our work in these
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areas. It is hoped that the ideas presented here will promote the discussion of
Peer-to-Peer data distribution not only in the BOINC and Desktop Grid groups,
but also to the wider scientific community, encouraging others to explore P2P
as a valid and useful approach for data distribution.
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Abstract As Internet Desktop Grids become more and more popular in the success story of
@Home projects, it is important to provide support for other more demanding
applications that make use of large amounts of data to be computed. We have been
investigating P2P techniques to facilitate the distribution of large chunks of shared
data among an increasing set of workers. When we start using P2P techniques the
workers will connect among them and, having a mean of communication, they can
develop malicious coalitions. Classical sabotage tolerance techniques adopted
by Internet Desktop Grid platforms assume the isolation of workers and do not
tackle the collusion threat. In this paper we propose some sabotage tolerance
techniques that can be used by a middleware like BOINC if enhanced with a P2P
infrastructure for data distribution. The master will build the reputation of all
the workers, by observing their trustworthiness from their previous results and
the compliance with the P2P data delivery protocols. Reputation information
can be incorporated in the result-validation process by using a weighted voting
algorithm.

Keywords: desktop grids, collusion, weighted voting, reputation, BitTorrent
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1. Introduction

Internet Desktop Grids [1, 3] aggregate huge distributed resources over the
Internet and make them available for running various applications.

BOINC [1], the most popular desktop grid platform, runs about 40 projects
and collects together more than 400,000 volunteer computers performing on
average over 400 TeraFLOPS [2]. BOINC is organized on a reverse master-
worker computational model. The master takes care of all job distribution to
workers, including data delivery. A meaningful number of applications that
run on top of such distributed environments require various experiments to be
performed on the same big amount of shared data. If the number of workers
to distribute these shared data is also big, a lot of burden is put on the master.
Thus, servers running the master need to have large bandwidth capabilities to
scale the data delivery to this increased number of users.

Peer-to-peer content distribution becomes very popular in the last years,
due to their scalability and robustness properties. Recent advances [19–20]
proved that collaborative file distribution solutions enhances desktop grids by
alleviating the bandwidth needs at the server side. With respect to BOINC,
Costa et al. [5] proposes the usage BitTorrent [4] as a P2P data sharing
technique to tackle the data distribution problem. By adopting this solution,
workers will become peers and will acquire a technical mean of collaboration.
But, this technical infrastructure can also be used to raise a collective malicious
behavior, while we can not assume that peers are trustworthy and they do not
pursue to sabotage the computation.

In its classical topology, BOINC volunteers are independent and isolated en-
tities. The master guarantees the dependability of the system by implementing
sabotage tolerance techniques [6] to cope with malicious volunteers. Among
other techniques, BOINC uses replication with majority voting [1, 17]. But,
if the workers are networked, small-sized malicious controlling coalitions can
emerge and undermine the result outcome of voting processes, even in the pres-
ence of a majority of honestly-behaving workers. In the volunteer computing
community, Zhao et al. [21] acknowledge the collusion threat for volunteers
that can communicate to each other, using, for example, a DHT.

To face the new collision threat, this paper proposes to combine weighted
voting with reputation for determining whether to accept a result or not. The
master will possess a trust table with entries for each worker containing the
reputation values. Before accepting the results, based on the reputation of the
workers which have already computed the task, the master can decide on-the-fly
if further replication is required. For building the reputation, we adapt the
quizzes technique of Zhao et al. [21] to the requirements of BOINC.

Further, the behavior of workers in the BitTorrent P2P network could consti-
tute valuable information to adjust the reputation values of socially-connected
workers. We consider that a peer who did not comply with the BitTorrent
protocol during data distribution is more likely to sabotage in the volunteer com-
puting. In the BitTorrent network, we ask peers to assess the effectiveness of
the collaboration received from other peers and to build local trust. The master
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will collect these local trust values, and applying the EigenTrust algorithm [11]
can assess the global peers’ trustworthiness in the BitTorrent distribution.

The paper is organized as follows. In section 2 we describe related work in
the area of sabotage tolerance for volunteer computing. Section 3 presents the
weighted voting decision criteria. Section 4 talks about reputation, presenting
how the master builds the direct reputation of workers with the quizzes approach
and the inference process for the indirect reputation assessing the trustworthiness
of peers in the data distribution protocol. Section 5 concludes the paper.

2. Related work

Various schemes were proposed for sabotage tolerance. Sander and Tschudin
[16] propose the usage of encryption techniques. When the master assigns a
task, it includes two functions: specifically f(x), representing the target of the
computation, and an encrypted function E(f)(x). At the end of the computa-
tion, the master verifies the received results y = f(x) and y′ = E(f)(x). If
y = P (f)(y′), where P is the decryption of E, the participant is considered
trustworthy. The difficulty of this approach resides in generating the encrypted
function E(f) for a given function f .

If the volunteer computing platform has to solve a search problem over
some space D, each worker will be responsible for searching a subspace Di.
According with Golle and Mironov [9], the master can plant ringers in each
subspace to be sure the workers indeed carry out the full search. Similar to
ringers is chaff injection proposed by Du et al. [8], which addresses the problem
of ‘hoarding cheaters’. Hoarding cheaters discover rare results in their search
space but avoid reporting them, as they believe they can valorize these results
in another better way.

BOINC uses replication for result validation [1]. For each work unit, more
than one result replicas are created. If M is the replication factor, the master
accepts a result only if at it collects least M responses that agree on the same
result. This method gives impressive results for the case when the total number
of saboteurs is very small. But it is very computation-demanding requesting
each task to be computed at least twice and can not be used in volunteer
environments with low resources [21].

A complement to replication is sampling. Instead of verifying all received
results, the master perform sampling and verifies only a subset of them - named
probes [7]. If probes verification succeeds, then the master accepts the results
received from the verified worker. This technique can be easily compromised
by malicious workers if they are able to distinguish the probes from the real
applications.

Sarmenta [17] introduces probing by spot checking. Probes - named now
spotters, are tasks with known results. If a worker fails to compute correctly
a spotter, it will get blacklisted and all its results will be invalidated. Based
on spot-checking, Sarmenta defines the credibility of a worker and a result.
The credibility of a worker is an estimate of the probability the worker will
return a correct result. The credibility of a result is the conditional probability
that the result originating from a worker will be accepted as correct. Workers
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build credibility by passing spot checking. Specifically, if f is the proportion
of malicious nodes, the credibility of a worker which correctly computed k

spotters will be 1 − f
1−f

1
ke

. If the master receives a result from a worker with
a credibility less than some threshold ϑ, it will ask for a new result replica for
that work unit. After workers pass enough spotters, they succeed to secure a
high-enough credibility for their results.

Quizzes proposed by Zhao et al. [21] are very similar with the above-
mentioned spotters. The probes are short questions with easy-to-compute
responses. The master sends batches of jobs to workers and inserts such quizzes
in each batch. If the worker responds correctly to quizzes, the results are
accepted without additional verification. Workers gain reputation by passing
quizzes. The master decides how many quizzes to administrate to a worker
according with its reputation. Thus, a reputed worker get less verified. This is a
trap for malicious volunteers which can behave well for a long period of time
and then, start cheating, as they get enough reputation. Because the quizzes are
usually short questions, the workers can easily distinguish them from the real
tasks. Thus, a cheating strategy could be to compute correctly every medium-
to-short length tasks and cheat only for long duration tasks, which have a small
probability to be probes. The master should posses an efficient method for
generating quizzes [6] and make the quizzes indistinguishable for the worker.

All the above-mentioned approaches do not directly tackle the collusion
threat.

3. Replication: Weighted Voting

In this section, we describe the weighted voting decision criteria for selecting
the correct result for work unit.

Let assume a work unit was replicated n times to workers wi, i = 1, n and
we collected m distinct results rj , j = 1, m. The master holds a trust table T

containing the reputation value ti for each worker wi. The reputation value ti is
a real number from interval [0, 1], assessing how trustable is user i. In section 4
we will show how the master builds the trust table.

If m = 1 and n = 1 (i.e. only one result supplied by only one worker), we
will directly accept this result if the reputation of the worker is 1. Otherwise,
to decide which result rj to accept, the master employs a weighted voting
tournament [14], each result collecting the weighted votes of the workers that
produced the result. Reputation values ti constitute the weights.

Formally, we denote ϕi,j = 1 if the worker wi computed the result rj and
ϕi,j = 0 otherwise. Thus, each result rj yields a relative score sj of eq. (1):

sj =

∑

i ϕi,jti
∑

i ti
(1)

If sj∗ = maxj sj , the weighted voting decision criteria accepts result rj∗ if
sj∗ > θ, where θ is the required quorum (i.e. the result that scored maximum
and this score is higher than the required quorum).

The quorum θ need to be selected after experiments such that
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θ > 0.5, i.e. no minority can win

to guarantee a good fitness of the results in the presence of low reputation
workers.

In addition to the classical decision criteria presented above, we impose an-
other restriction. Formally, if wl is the lower reputed worker in set {wi |ϕi,j∗ =
1} of winning workers and the result rj∗ would loose the voting contest without
the contribution of wl, then we require tl > 0.5. According with Shapley and
Shubik [18], the worker wl is named pivotal.

By imposing this condition we remove the possibility that a low reputed
worker to turn the voting balance toward a particular result and it protects
the master against the possibility that a coalition of low reputed workers to
undermine the result submitted by a high reputed worker. E.g., in the absence of
condition this condition, 3 workers with reputation of 0.4 submitting the same
result could overturn the result submitted by a worker with reputation 0.9. More,
if two contradicting results are claimed by high reputed workers, the restriction
over the reputation of the pivotal worker would forbid a low reputation worker
to become decisive in the weighted voting tournament.

4. Reputation

In this section, we present the way the master builds the reputation value for
each worker.

Reputation is what is generally said or believed about a persons’ or things’
character or standing, being a mean of building trust, as one can trust another
based on a good reputation [10]. Therefore, reputation is a measure of trust-
worthiness.With regard to our problem, the master builds the reputation of
workers by assessing their behavior in the volunteer computing pool. Each
worker plays two roles: workers (i.e. computing tasks on the behalf of the
master) and peers (i.e. helping the data distribution by participating in the
BitTorrent protocol). The master is able to observe only the behavior or the
participants as workers, while it needs to interrogate the community to find
out the participants’ behavior as peers. Reputation collected by assessing the
behavior as a worker will represent the direct reputation. Reputation collected
from the community will represent the indirect reputation and will potentially
affect the direct reputation. The master will store the reputation values in its
trust table, used for the weighted voting decision criteria.

4.1 Direct reputation

The master builds the direct reputation of a worker adapting the quizzes
technique [21] for BOINC.

Using quizzes, the reputation of a worker is directly proportional to the
number of quizzes successfully passed by the worker. Zhao et al. [21] proved
that, if the worker passed v quizzes, in the case that 50% of the workers are
malicious and each worker defects with a probability uniformly distributed
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between 0 and 1, then, the number m′ of additional quizzes the worker should
pass to obtain the error rate Err of a result is given by eq. (2):

m′ =

√

1

Err
− v − 2 (2)

Thus, the amount mmax =
√

1
Err

− 2 represents the maximum number of
quizzes a worker should pass to acquire enough reputation for guaranteeing
that its results are correct given the error rate Err. Therefore, each quiz passed
successfully by a worker increases its reputation with 1

mmax
. Figure 1 show

how many quizzes a worker should pass in order to obtain different demanded
error rates.
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Figure 1. Number of quizzes a worker should pass to obtain different demanded error rates

Adapting quizzes to BOINC platform is a difficult step. If by a quiz we
refer to an indistinguishable task with an easy verifiable response, then, the
master would have to embed quizzes together with real applications in one work
unit, i.e. one executable. Thus, the master would have to append the quizzes
at the end of the real application and to expect the response for quizzes in a
particular position of the output file. But, this implies run-time generation of
the application executable for work units. We consider that this is difficult to
achieve in BOINC, because BOINC applications are compiled independent of
the sabotage tolerance method used for result validation.
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Instead, we propose to consider as a passed quiz each work unit successfully
validated by the master, using the weighted voting replication. First, the master
selects some acceptable error rate Err. When a new worker joins the computing
environment, this host will get an initial reputation of 0. Each result produced by
the worker will enter the weighted voting tournament. If the result is accepted,
reputation of the worker will increase by the amount 1

mmax
.

We can note that after worker’s reputation reaches 1, its results will be
validated without any replication. To avoid the attack of a worker which
behaves correctly for a long period of time and starts cheating only after a while,
the master will register the time stamp te of every correctly computed result
that contributed to the reputation of the worker. The master keeps the results
together with their time stamps in a database and discards these results after a
time period δt (which can be 1 week, 1 month etc.). When discarding a result
from the results database, the master will update the worker’s reputation by
subtracting the value 1

mmax
. With this scheme, if a worker does not contribute

to the volunteer environment for a while, its reputation will decrease gradually,
as its results are dropped out of the master’s database. If a result gets invalidated
by the decision of the weighted replication, as advised in [21], the master will
halve the reputation of the originating worker.

4.2 Indirect reputation

In subsection 4.1 we described the way a worker can collect reputation by
correctly computing the work units. Although [21] reports very good results
by applying the quizzes, we still did not consider the possibility of collusion.
Now, workers have the means of communicating, because they are peers in the
BitTorrent distribution. We consider that observing the workers behavior in
BitTorrent is meaningful, because it can give an indication about the character
of the peer. If a peer exploits or tries to sabotage the BitTorrent data distribution
protocol, it would be much likely for that peer to attempt sabotage the BOINC
computations.

To discover the above-mentioned behavior, we will let each peer to locally
build the reputation of partners in the BitTorrent protocol. Before entering the
weighted voting tournament, the master will ask the workers to deliver their
information regarding another worker which produced a particular result. This
information will allow the master to infer on the worker’s trustworthiness and
adjust the direct reputation values accordingly.

Although BitTorrent [4] has some incentive-based design mechanisms that
emphasizes peer collaboration, it was proved that exploits are possible [15].
Peers free ride on BitTorrent, by downloading without uploading. Therefore,
from the point of view of a peer i, another peer j has a good reputation if it lets
i to download and the amount of data downloaded from peer j is higher than
the amount i uploaded to j. If we denote by dj→i the amount of data peer i
downloaded from j, then, the download-upload factor dij is the report between
dj→i and di→j . Higher the download-upload factor is, more reputed peer j is in
the view of peer i. dij is the local reputation of peer i concerning peer j.
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Regarding the download-upload factor of peers, a concern might relate
peers that runs BOINC from home and have a slow Internet connection or
their Internet Service Providers shape their traffic. Experiments [13] with the
BitTorrent protocol shows that peers with similar bandwidth capabilities cluster
themselves, i.e. a peer exchanges most of the data chunks with other peers with
a similar bandwidth profile. Slow peers stay longer in the torrent and end up
downloading from the seed, as the faster peers finish downloading earlier and
leave the torrent. Therefore, we expect that bandwidth capabilities of peers to
have a minor influence over the download-upload factor.

Further, we equip each peer i with a blacklist containing peers which tried
to sabotage the data distribution. Peer i bans all peers j on its blacklist from
further interactions within the BitTorrent distribution. A peer can get banned
because it uploaded corrupted chunks of data or because it tried to abuse the
connection it has with another peer in other ways. We can assume that if a peer
is malicious and abuses its partners, it will do so it with majority of the peers in
the pool.

Suppose the master coordinates n peers p1, . . . , pn in the BitTorrent distri-
bution. The master performs the weighted voting decision criteria in order to
accept a result. Decision criteria tournament runs over results submitted back
by m workers w1, . . . , wm out of the n peers. Regarding each worker wj , the
master will ask each peer pi (pi 6= wj) to report if wj is on its blacklist or if not,
to deliver the value dij .

Under the assumption that at most [n/3] peers are malicious, if we obtain at
least ⌈n/3⌉ blacklists responses for a worker j, we can classify that wj is mali-
cious, invalidate its result and blacklist it from the volunteer environment. The
value [n/3] is the maximum number of malicious peers a Byzantine agreement
protocol can accommodate [12] .

If no workers were classified as malicious after the verification of the blacklist
information, the master possesses a matrix D = {dij} (dii = 0) with the
download-upload factors, which in fact are local trust values. The master
can build this matrix as it coordinates the BitTorrent distribution and has all
contribution values of all peers. Starting with this matrix, the master can apply
the EigenTrust algorithm [11] to obtain the global trust value for each peer.
This algorithm proceeds as follows:

first, normalize matrix D to matrix C = {cij} such as cij =
dij

∑

j dij

initialize a vector ~t(0) = (t
(0)
i ) with t

(0)
i = 1

n
for every 1 ≤ i ≤ n

compute iteratively the vector ~t(k+1) = CT~t(k), until the difference
∥

∥~t(k+1) − ~t(k)
∥

∥ is less than a small value ǫ

the values of vector ~t(k+1) are the eigen values of matrix C and represent
the global (indirect) trust values of each peer, as emerged from the peer
compliance with the BitTorrent protocol.

Kamvar et al. [11] demonstrated that this algorithm converges and this
scheme of computing the trust values is resistant against various attacks, includ-
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ing the one with collective malicious peers that supplies good reputation to each
other while supplying a bad reputation to other peers.

Therefore, we can use them as a substitute for the indirect reputation, in order
to adjust the direct reputation values of section 4.1. The reputation that will
represent the weight of a vote will therefore be the direct reputation multiplied
with the indirect global reputation value.

5. Conclusion

This paper describes sabotage tolerance techniques for tackling the workers’
collusion problem in Internet Desktop Grids. Our methods address the BOINC
platform, equipped with the BitTorrent data distribution facilities. Workers,
now being involved in a P2P data distribution protocol, have the means of com-
municating each other and they can develop malicious coalitions to undermine
the BOINC computations. We track the workers’ behavior by the mean of
reputation. To incorporate reputation in the result validation decision criteria,
we adopted the weighted voting procedure. Reputation is collected from two
sources. First, we assess the volunteers’ previous behavior using the quizzes
technique, adapted for BOINC. Second, using the EigenTrust algorithm, we
compute the global reputation that emerges out of the local trust each peer
develops regarding its partners in the BitTorrent data distribution.

As a further research, we plan to experiment our proposed sabotage tolerance
methods. More, if the research in enhancing Internet Desktop Grids with P2P
capabilities goes further, we plan to investigate new techniques for addressing
data security issues and for restricting the possibility that a clique of malicious
peers to get control over some part of the new created P2P network.
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